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ABSTRACT

Strategyproof (SP) classification considers situations in which a

While the underlying problems (e.qg., finding the median, or finding
the optimal classifier) typically have efficient algorithms, these al-

decision-maker must classify a set of input points with binary la- gorithms may fail in the presence of strategic behavior. Therefore

bels, minimizing expected error. Labels of input points are reported

by self-interested agents, who may lie so as to obtain a classifier
more closely matching their own labels. These lies would create

a bias in the data, and thus motivate the desigmuwhful mecha-
nisms that discourage false reporting.

We here answer questions left open by previous research on strai
egyproof classification [12,
approximation ratio (in terms of social welfare) that an SP mech-
anism can guarantee far agents. Our primary result is a lower
bound of3 — % on the approximation ratio of SP mechanisms under

the shared inputs assumption; this shows that the previously known

upper bound (for uniform weights) is tight. The proof relies on a

result from Social Choice theory, showing that any SP mechanism
must select a dictator at random, according to some fixed distri-

bution. We then show how different randomizations can improve

the best known mechanism when agents are weighted, matching
the lower bound with a tight upper bound. These results contribute
both to a better understanding of the limits of SP classification, as

well as to the development of similar tools in other, related domains
such as SP facility location.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence ]: Distributed Avrtificial Intelligence—
Multiagent Systems

General Terms
Theory, Algorithms, Economics
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1. INTRODUCTION

Approximate mechanism design without mogylDw/oM) is

we seek mechanisms that have additional game-theoretic proper-
ties (usually strategyproofness) at the expense of a suboptimal, i.e.,
approximate, behavior.

One particularly interesting AMDw/oM problem is the design
of truthful learning algorithms, which incentivize experts to reveal

t_their true opinions, even in cases where they disagree with one an-
1B.14], in particular regarding the best other. Within this framework, we focus on binary classification—

that is, there is a set of (known) data points that our mechanism
needs to classify as positive/negative. Data points can represent,
for example, medical records of tumors that an expert-system has
to classify as eithemalignantor benign Following the standard
classification literature, the classifier is selected from a predefined
set of classifiers (e.g., linear separators in some space) known as
theconcept class

Our mechanism outputs a classifier based on labels collected
from n, distinct experts. The goal of the mechanism is to maximize
social welfare, by selecting a classifier that is closeaverageo
the opinions of all experts. However, experts may disagree as to
the correct label of a specific point. Furthermore, they may behave
strategically, i.e., report false labels if this will bias the resulting
classifier to be closer to their opinion. We are therefore interested
in strategyproof(SP) classification mechanisms, where no agent
(expert) can “gain” by lying. As a result, the outcome is just an
approximationof the optimal classifier, i.e., the selected classifier
makes more errors than the optimal one. We seek the best possible
approximation ratio that can be guaranteed using SP mechanisms.

1.1 Motivation

Note that the restriction to a predefined concept class is an impor-
tant part of the problem. Without it, we could simply classify each
data point separately. However, as rigorously demonstrated in the
machine learning literature, it is precisely this restriction that en-
ables us to generalize, i.e., to apply the outcome classifier on new,
unseen, cases. Previous papers on SP classification and learning
(see the next section) cover real-world examples where the need to

a rapidly growing area of research in game theory and multiagent generalize justifies this restriction.

systems, whose goal is the design of mechanisms for multiagent

optimization problems (without the mechanisms’ use of payments).

Cite as: Tight Bounds for Strategyproof Classification, Reshef Meir
Shaull Almagor, Assaf Michaely and Jeffrey S. RosenscHeioc. of 10th

Int. Conf. on Autonomous Agents and Multiagent Systems (AAMASAN

2011) Yolum, Tumer, Stone and Sonenberg (eds.), May, 2-6, 201feiTai
Taiwan, pp. XXX-=XXX.

Copyright(© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Nevertheless, SP classification might be required also for one-
time decision making The following is an example showing how
concept class restrictions can be derived from external constraints.

example.

Consider a situation in which two or more parties (the agents of
our scenario) are in a conflict regarding the ownership of a certain
piece of land. The property is abundant with resources in various



locations (the data points), and the parties may attribute different bound for the non-weighted case with an equal lower bound, thus
(possibly negative) importance to each resource. A neutral arbi- proving its tightness. The proof relies on the fact that every SP
trator agrees to hear them out and divide the field between themmechanism must be (randomly) dictatorial on a subdomain, thereby
in a way that will maximize the average utility of all the involved showing that the technical assumptiondin [14] can be eliminated.

parties. It is reasonable to assume that this division has some con- We then consider the weighted case, giving three different SP
straints, for example, that the border has to be a straight line, or mechanisms for two agents that beat the known upper bound of
that it has to pass through a specific location. This leaves us with 3. While the approximation ratio of the first mechanism is still

a (large, possibly infinite) set of borders, or classifiers, from which suboptimal {/5), it is based on simple heuristics, and shows an

the arbitrator may choose. Knowing how their reported preferences interesting relation to the golden ratio. The other two mechanisms
affect the decision, each party may misreport its true evaluation of guarantee 2-approximation, thereby matching both the upper and

each resource, in an attempt to achieve a favorable outcome. lower bounds for two non-weighted agents. Finally, we present a
new mechanism for any set of weighted agents, with a guaranteed
1.2 Related Work approximation ratio o8 — 2, thereby improving the previously

known upper bound and matching it with the lower bound.

Strategyproof classification.

The first paper on SP classification was by Meir, Procaccia, and 2. MODEL AND NOTATIONS
Rosenschein [12], who studied a highly restricted case in which L
only two classifiers are available. The authors proposed a sim- 2.1 Classification

ple deterministic 3-approximation mechanism, and proved that no e adopt the shared input model presented in [13], being con-
better (deterministic) SP mechanisms exist. They further demon- sjstent where possible with their notations. We refer the reader to
strated a randomized SP mechanism that guarantees an approximagrevious work on SP classificatidn |12] 13] 14] for more details.
tion ratio of 2, and that this bound is also tight. We typically denote sets and their elementsiy {ah as, .. _}’

We follow an extension of this model outlined by the same au- and vectors by = (a(1),a(2),...). A(A) contains all probabil-
thors in [13], where arbitrary concept classes can be used, but theity distribution vectors over the set. [E] denotes the indicator

same set of data points is st#haredby all agents. Notably, N0 variable of the expressiof. To facilitate reading, subscripts are
bounded approximation ratio can be guaranteed by deterministic sometimes omitted when clear from the context.

SP mechanisms, but the authors show how selecting a random agent
as a dictator guarantees an approximation ratio of 3, and one that isc|gssifiers.
even better§ — 2) when agents are non-weighted. However, itis A" classification settings a pair (X,C), where X (the input
unknown whether better randomized mechanisms exist. space) is some finite set, add(the concept class) contains func-
A similar model without the shared inputs assumption has also ions of the forme : X — {—,+}. In the land-ownership problem
been studied, showing mainly negative results [14]. Using results ¢, example contains all the allowed partitions of the territory.
from social choice theory, the authors showed that deterministic  Aq instanceof the setting(X,C) is a tuple defined a§ =
SP mechanisms cannot guarantee any useful approximation ratio.<X I,{Yi}ier,w), where X E’Xk is the (public) set of data
They further conjectured that a similar reduction can be used to poi7r1té to bé c7lass,ifiedl is the set ofn > 2 agents,Y; : X —
supply a lower bound for randomized mechanisms, but failed to {—,+} is the “correct” labeling accordiﬁg to ageinténdwi cR
supply one that does not require further technical assumptions. is r;er weight 5., w; = 1). Y; is referred to as’agem’s type
jer Wi — 1) Li

. . . . and it is private information. We denote the partial dataset of agent
Approximate mechanism design without money. iby S; = (X,Y;). S contains all possible datasets over the input
Mechanisms that deal with strategic behavior of agents have beenspacex. Let S, .\, be the set of all possible datasetssuch that
proposed recently for a large range of applications. While certain 11| =n, |X| = k. We also allow the limit case — o0, in which

restrictions may allow the design of optimal SP mechanisms [19], caseY; : X — [0, 1], states the (rational) positive fraction on each
often this is not the case, and approximation is a must. Outside thejnput point.S contains all datasets (finite and infinite).

classification domain, SP learning algorithms were studied for both Theprivate riskof a classifieic € C is defined as the fraction of
clustering[[17] and regressidn [16, 4]. Other mechanisms have beenggent;’'s dataset that is misclassified byi.e.,

proposed for facility location (see e.d.| [1]11], and [18], which also 1 1
provides a clear overview of the field), matchihg[[2, 6], resource al- Ri(c,S) = 72[[0(1) £y] = 72[[0(33) £Yi(z)] .
location [8]9] and more. As our motivating example shows, prob- k( k

lems in one domain can sometimes be formalized in other domains
as well. There are also interesting similarities between some of the
results and techniques in those various domains.

z,y)€S; zeX

As R;(c, S) can be seen as a measuraisfsatisfactiorthat suf-
fers due to outcome, theglobal riskR; (¢, S) measures the social
welfare, i.e. the (dis)satisfaction of the entire society. It is defined

Other related work as a weighted average over all agents,

A closely related, yet different, challengeadversarial classi- _ b 1 _ v

fication [0, [3,[5]. Here the underlying assumption is that labels Ri(e,5) = sz ‘Ri(e, 8) = k Z Z wile(z) # Yi(@)] -

are chosen intentionally to hamper the mechanism (for example to

avoid spam detection), whereas in our setting the agents are ratio- Letp € A(C) be a lottery over the concept claSsthat assigns
nal, rather than adversarial. Another difference is that the goal of the probabilityp(w) to the concept.,. For simplicity we treap

SP classification is to preclude untruthful behavior in the first place, as if it is a classifier, and extend the risk to lotteries linearly, i.e.,

i€l i€l zeX

and not to cope with it. R(p,S) = >wea PW) - R(cw, 5).
) . We denote byF RM (S) € C (for Empirical Risk Minimizer)
1.3 Our Contribution the concept that makes the smallest number of erroiS.an is a

We close the gap left Open by [13], matching thb}p % upper Shorthand fOIERM(SZ) WhenS iS Clear from the context.



Mechanisms.
A randomized mechanism a functionM : S — A(C), i.e.,

Leta- S be aduplicationof S, i.e., every data point i§ appears
exactlya times ina - S, with the same labels. A mechanism is

that for every input dataset of any size, outputs a lottery over clas- consistenif forall a € N, S € S, M(S) = M(a - 5).

sifiers. We denote byM (.S) or p sy (or justp whenM, S are

A probability distributionp is p-granularif all probabilitiesp(c)

clear from the context) the outcome of the randomized mechanism are multiples ofu, i.e., if there is some integer vectqrsuch that

M on the input datasef.

Note that we can define a mechanism using a lott&rgver
several other mechanisrosf1, Mo, ..., wherep rs)(c) equals
> d(j)Pam;(s)(c). We define the following properties:

A dictatormechanism is identified with a single agénFor any
S, M returnsc; (S) with probability 1.

A dupleis a mechanism that assigns probability O to all concepts,

except (at most) two.
A random-dictator(RD) mechanism is identified with a lottery

d € A(I) over dictator mechanisms. This distribution may depend
on agent weights, if relevant. The two following RD mechanisms

are notable special cases:

e The weighted random dictato(WRD) mechanism returns

e Theheaviest dictato(HD) mechanism always returag(S),
whereh = argmax_,w;. Ties are broken in favor of the
agent with the higher index, thusis uniquely defined.

A random-dictator-duplg RDD) mechanism is a lottery over
dictators and duples.

A mechanism is said to be drapproximationrmechanism if its
expected risk is at mogt times the optimal risk. Formally, for
every datasef

R/ (M(S),S) < L-R;(c*(S), S).

A mechanism is said to bstrategyproof(SP), if no agent can
gain (in expectation) by lying. Formally, for every dataSetgent
1, and alternative labelS; = (X,Y),

R:(M(S), ) < Ri(M(S_;,5:), S).

Note that duples and dictator mechanisms are always SP. Moreover

RDs and RDDs are also &P.

Intuitively, good mechanisms are both SP and have a low approx-
imation ratio; thus, we are interested in the best possible approxi-

q - 1 = p. A mechanism is said to be-granular if for all S,
M(S) is p-granular. Note that when we deal with mechanisms
that are implemented on digital computers, it is useful to assume
that they will bep-granular for some.

2.2 \Voting

Our proofs make extensive use of voting functions and their rela-
tions with classification mechanisms. We bring here the definitions
relevant to our needs. For a more detailed background on voting,
see e.g./[15].

In a voting scenario there is a set of voters (agehtand a finite
set of candidateS. Each voter has a strict preference orfigiover
all candidates. We denote ly>~; ¢’ the fact that votei prefers
coverc’. A preference profileR = (Ri, ..., R,) contains the
preference order of each voter (agent). &t be the set of all
possible preference profiles farvoters,R = J,,~, R™.

A randomized voting rulés a functionf : R — A(C). Note
that preferences are private, thus the voting rule must use the orders
reported by the agents. The definitions of a duple, RD and RDD
also apply to voting rules. While the definition of manipulation in
deterministic voting rules is straightforward (i.e., there is an agent
that can gain by reporting false preferences), it does not apply as-is
to randomized rules. This is since the preferences of agewner
lotteries of candidates are not uniquely defined/yy To that end,
we must introduce cardinal (dis)utiliti8s.

A utility scaleu; € RI°! fitsorderR; if for all ¢, ¢’ € C,

ui(c) <wui(c) <= c=ic.

We adopt the same notation to classification settings, meaning that
the risk ofc is higher than the risk af .

A manipulationin f (by Gibbard) consists of a profil, a utility
'scaleui that fits R;, and an alternative orde®;, such that gains

according tou; (formally, thatu;(f(R)) > w;(f(R—:, R}))). A
voting rule isstrategyproof(SP) if there are no manipulations jn

THEOREM3 (GIBBARD '77 [7]). Letf be arandomized vot-

mation ratio that can be achieved by randomized SP mechanismsing ryle. If f is SP, then it is a lottery over duples and dictatorial

The following bounds are known:

THEOREM1 (MEIR, PROCACCIA AND ROSENSCHEIN[12]).

If |C| = 2, then there is a randomized SP mechanism that guaran-
tees a 2-approximation ratio. Furthermore, no SP mechanism can

do better.

rules.

3. RESULTS
3.1 Multiple Agents with Uniform Weights

In this section we match the upper boundof % with a lower

Thus for classes of two functions, SP mechanisms are thoroughly hound, thus proving it is tight.

understood. For general concept classes, there are uppersbound

THEOREM2 (MEIR, PROCACCIA AND ROSENSCHEIN[L3]).

For any concept clasg, the WRD mechanism guarantees a 3-
approximation ratio. If all agents have equal weight, then the ap-

proximation ratio is3 — 2.

There are examples showing that these are the best approxima

We use a simple input space with three input paiits {x, y, z}.
There are 3 classifiers, = {c, ¢y, ¢}, Wherecy(w') =*“+" for
w = w’ and “-” otherwise. When both the agent and the dataset are
clear from the context, we use the shorthafa) = R;(cw, S).

THEOREM 4. Let M be an SP mechanism for the scenario

(X,C). Then for anye > 0 and any|I| = n > 2, there is an

instanceS with uniform weights such that

tion ratios that WRD can guarantee. However, it has been unknown
whether there arether SP mechanisms that are better. Our work
comes to answer this question. We make use of two additional
properties of classification mechanisms.

R/(M(S), 5) > (3 - % - e) Ri(c*(S), ).

Also, if M is eitherconsistenbr u-granular, then we can find such

This is since duples and dictators are SRIgminant strategigs a dataset which is finite, and has= O (é, i) data points.
not just in expectation, and therefore any combination of them (as H

long as it does not depend on labels) is still SP. 2For consistency with the risk, we treat lower utility tter.




We will restrict the allowed datasets as follows. FifStcontains
exactlyk data points on each input point, i.8% data points in to-
tal. We denote by; (w), k, (w) the number of positive and negative
labels for each point. We further restrict the labels of each agent,
such that: one input point oF is all negative (i.e.k;(-) = 0); one
is all positive (i.e.k;(-) = k); and the third has at least one label
ofeach (i.e.l < k;(-) <k —1).

We refer to this third point as thepntingent poinf] Clearly, M
is still SP w.r.t. the restricted case.

The risk of each classifier can be simply written (e.g..ddras
= () +Ei(y) + Fi(2)

Note that every partial datas8t is now identified with a strict
preference ordeR; overC (for ease of exposition, assunig =
(ex =i ¢y =i ¢z)), and a rational number; € (0, 1) which is the
fraction of negative labels on the contingent point y.

To see this, observe that

_1—0(1'. _1+O¢i. 3 — o

00 = 5y = 5 @ = TN

Consequentlyy, ¢, classify the contingent point (which is y in this
case) as negative, anglclassifies it as positive.

We can therefore write eadd) as(R;, o).

Our proof sketch can be summarized as follows:

r(X) = R;i(ex, S)

1. Give a simpler, normalized presentation of the risk scale.

2. Show thatM is monotonic.

. Show that any (monotonic) SP mechanism must ignore the
value ofa.

. ThusM is actually a randomized voting rule ov@r
. SinceM is SP, itis an RDD.
. Duples are bad, s& is almost entirely an RD.

. We show a datasét on which RD mechanisms have a close
to3 — % approximation ratio.

Crucially, all steps except the last one (Lenima 11) are indepen-

dent of agent weights.

Proof of Theorerh]4The preference order of agenover lotteries

in a given settings, is completely defined by her risk scale, i.e., by
the vectorr = (r(x),r(y),r(z)). Note that the risk of lotterp
according to risk scale is the inner producR; (p, S) =r - p.

DEFINITION 1. Two risk scalex, t are equivalent if for any
two outcomep, p’ € A(C),

r-p<r~p' = t-p<t'p/7

i.e., if they induce the same order over outcomes.

LEMMA 5 (NORMALIZATION). LetS; = (R;, o), then the
risk scalesr = (r(x),r(y),r(z)) andt = (0, a;,1) are equiva-
lent.

Proof. We denote by (w) = p(w) — p’(w). Note that
0(x)+0(y)+4(z) =0. 2

3For infinite datasets witht = oo this means that the contingent
point must have a non-zero fraction of each sign.

In addition, it holds from[{l1) that

r(y) —r(x) _ltai—-(1- ;) _ 204
r(z)—r(xX) 3—a;i—(1— o) 2

®)

= 5.

(from (2))

=
(division by a positive number)

(from (3))

O

Due to Lemmd&Bb, we can work with the normalized risk sdale
instead ofr. This also holds for utility scales of voting functions.

thusp - t < p’ - t, as required.

ReEMARK 1. Normalization only works for a fixed scate If t
is the normalized scale af it is not true for example thab - t >
p-t' derivesp-r >p-r'.

The following notations are used in our next two lemmas. Let
S; = (Ri,a), Si = (R;,a’). Assume w.l.o.g. thak; = (X >=;
y = Z) (i.e., x has the lowest risk fa). Letp = M(S) andp’ =
M(S") denote the outcome of the mechanism on both datasets. Let
t andd(w) as in Lemméb.

SinceM is SP, we have the following constraints:

1. Ri(p,S) < Ri(p’,S) (otherwise,i can easily gain by re-
porting S; instead ofS;).
2. Ri(p,S") > Ri(p’, 9") (otherwise,i can gain by reporting
S; instead ofSy).
We user(w) andr’(w) as shorthand foR;(w, S) andR;(w, S’),
respectively.
The next lemma shows that SP mechanisms must be “mono-
tone”, i.e., adding more positive labels to a point can only increase
the probability that it will be classified as positive.

LEMMA 6 (MONOTONICITY). If o < &, thenp(y) > p'(y).

Proof. From the first constraint we have that r < p’ - r. From
Lemmd® we can replaaewith the normalized risk, and thus

p-t<p-t
p(Y)a+p(z) <p'(y)a+p'(2)

=
=

é(y)a < —4(2) 4)
Similarly, from the second constraint we have that
5(y)e’ > —6(2) ®)

Taking the two inequalities together,

5(y)a < =6(2) < 8(y)a’ =

ad(y) < '8(y) =
3(y) < %/5(3/) = (since® > 1)
5(y) >0 = p(y) >p'(y) O



OBSERVATION 7. If there is a manipulation under utility scale  arbitrarya; € (0,1). The (randomized) outcome ¢fis defined

(0, , 1), the same manipulation must waekherfor any1 > ¢ > to be M (S). From LemmdB, the choice of; does not affect the
a, orfor any0 < t < «. This follows directly fron{)), since the outcome off.
inequality must hold as we changen one of the directions. Assume (towards a contradiction) that there is a collection of

datasetsS on whichM is not an RDD. LefR be the corresponding
Our next lemma shows that the size of the positive fraction on preference profiles t&; thus £ is not an RDD on these profiles.
the contingent point is irrelevant, as long as the preference order grom Theoreri3f is not SP, and thus has a manipulation.
R; is kept. W.l.o.g., there is a manipulation (iifi) for voter ¢, such that
X >; Y =; z. By scalingu;, we can further assume thaf(x) =
0, ui(y) =8, ui(z) =10
M(S=i, Si) = M(S—-i, ;). From Observatioh]7 we can assume that the same manipulation
o works with3 = - for somek’ € N (or 8 = 1 — -, which is the
Proof. We need to show that the constraints induced by strate- symmetric case).
gyproofness become inconsistent unless the outcereesip’ co- It is easy to see that if; = (R;,3), then reporting the false
incide. Unfortunately, the constraints that follow framand o’ labelingS; = (R}, o;) is a manipulation for ageritin M:
will not suffice, and it is in fact possible to find a pair of outcomes
that hold them. The crux lies in addinglaird point 5 between the uwi(f(R)) > ui(f(R—i, R})) =
first two, showing that new constraints reach a contradiction. ,
We rename’ to v, so that we have: < 8 < . We denote the Ri(M(S),5) > Ri(M(S—i, ), 5),
outcome ofM on each dataset 3s., pg, andp~, wherep, =
M(S_i, (Rs, o)), etc. Rewriting[(#) and reversing,, p-,

LEMMA 8 (INVARIANCE OF LABELS).

sinceu; is also the normalized risk scale f6f. This is in contra-

diction to M being SP; thereforeM is an RDD.

(p4(Y) — pa(yY))a > pa(z) — py(2) (6) Since % is not bounded, we allovik;(y)/k to take arbitrarily

Using 3, we similarly derive the constraints: small values, which is the limit cas®.—c..
(s(Y) — Pa(¥))B < palz) — ps(2) @) Boundingk under the consistency assumption.

We next show how the lemma still holds fany &, provided
that M is consistent. It holds from the previous paragraph that
M behaves as an RDD for all datasets of sizeor more. Let
(p+(y) —ps(¥))y < ps(2) — py(2) (8) k" > k such that” = a - k for some integet.. Now consider all
a duplications of datasets of sizei.e., all duplicated datasets S
s.t.S € Si. SinceM is an RDD forS,., itis in particular an RDD
for the duplicated dataseis S, C Sy/, and from consistency also
for Sg.

(otherwise reportindR;, «) is a manipulation ing), and

(otherwise reportingR;, 3) is a manipulation iny).

Now, assume (towards a contradiction) that(y) # p-(y).
From monotonicity we have that.(y) > p-(y), and strict in-
equality also holds for at least one of the subintervals, i.e., either

paly) > ps(y) Orps(y) > py (y): Boundingk under theu-granularity assumption.

We show that under this assumptiow( is RDD for all datasets

(P (Y) = Pa(¥)) = pa(2) — P4 (2) (from (8)) of sizek’ > 2. Denote byp, p’ the output ofM on the setss; and
= (pa(z) — ps(2)) + (p3(2) — p4(2)) S;, respectively, and lef = p — p’. Recall that the normalized
> (ps(Y) — pa(¥)B + (5 (y) — ps(y))y  (from (@),[8)) utility scale ofi is (0, 3,1). SinceR’ is a manipulation, we have
- 7 that
> (ps(Y) = pa(Y))a+ (P4 (y) —Ps(Y))a

(rom meonotoniclty andx < £,7) wi(f(R) — il f(R-s, ))) = Bo(Y) +6(2) > 0. (9)
= (ps(y) — Pa(y) + 1 (y) — pa(y))a _ _
= (py(y) — paly))a, which s a contradiction. We wish to show that there exist8 € [4,1 — £] such that

if we take 3 = @, then R’ remains a manipulation (and théh
Thuspa (y) = py(y), i-.,6(y) = 0. From [4) and[(b) it follows ~ samples suffice).
thatd(z) = 0. Finally, from [2) we have that(x) = 0 as well, and
thereforeM(S_;,S;) = p =p’ = M(S_;,S)).
A subtle issue lies in the finite case, since the proof works only
for pairsa, «y that differ by at least 2 points (so thereddetween

Case 11If §(z) = 0, then from [®) we havé(y) > 0. Thus, taking
B = p still ensures thaR’ is a manipulation, sinced(y) +

them). However, fok > 5, take anya < o’ < v < 7. We then 8(2) = pd(y) > 0.
have thap, = pa = p/, = p.., i.e., the same distribution must be
used at every point. O Case 2If 6(z) > 0, then by the assumption gfgranularity we have
thatd(z) > u. Also, we have the naive boundd&(fy) > —1.
LEMMA 9 (REDUCTION). M is an RDD. By setting3 = 4 we get5d(y)+0(z) > —5+pu =45 > 0.

Proof. This lemma completes the argument that is effectively

a voting rule, and therefore subject to the known limitations of SFCase 31 6(2) < 0 then by [9) we get(y) > Bi(y) > —4(2).

voting rules. It must use our assumptions.btin order to bound Thus, we can write-6(z) = ap andé(y) = by for integers

the sample size; however, we first prove the lenwithout these

assumptions, for the limit case bf= cc. “More formally, if there is a manipulation according g, then
We define a voting rulg as follows. For any profil&, construct from Lemmdb the same manipulation works with the utility scale

the corresponding datasstby settingS; = (R;, «;) for some u' = (0,8,1), where3 = wi(Z)=ui ()

ui(2)—u (X)°




S Sjv J#1
X y | z| Rile) || x y z | Rj(c)
ki()/k [ 1—€e|1]0 1 e |0
err of cx € 110 14+€] 0 € 0 €
errofey | 1—e |0 |0 1—€e|[1|1—€|0|2—c¢

Table 1: The first row shows the positive fraction on each point
in S. The next rows describe the errors that each classifier
makes on each point. R(c, S) is the sum of error fractions of ¢
over the three points inS;.

i > b > a > 0. From this we get
—5(2)_%< ap a1
Sy) bp = (a+DLp a+1 a+1
1 1% I
<1- =1-—<1-=.
- i 1+ p 2

Thus, we havel — £) §(y) + 6(z) > 0. O

We introduce a small constant> 0, whose value will be deter-
mined later. For now it is sufficient to require that the number of
samplesk would be at Ieas%, so that the contingent point can have
a positive fraction ot or less.

LEMMA 10. If M returns a duple with some probability greater
than 3¢, then its approximation ratio is at least 3.

Proof. Suppose that with probability of at lea%t, M returns a
duple over{cy, ¢y }. We define a datasét, in which all agents label
Z as positive ,x as negative, and y with a positive fraction @fe.,
ki(z) = k, ki(x) = 0, andk;(y) = 1)H The optimal classifier
c*(S) is of courserz, with a global risk ofr* = ...

However, M must returncy (or cx) w.p. of at leasBe; thus its
risk is atleasBe - Ry(cy,S) =3e (3(1+ ¢)) >e>3-r*. O

We can therefore assume tht returns a random dictator w.p.

of at leastl — 18e¢ (there are 6 different duples, and each one has a
probability of at mos8e).

LEmMA 11. Assume alh agents have the same weight M
returns a random dictator (i.e., some lottedyover agents), then
the approximation ratio of\1 is at least3 — 2 — ¢”, wheree” =
2ne + 96¢e > 0.

Proof. Let i (w.l.o.g.7 = 1) be the agent selected with the highest
probability (i.e.,d(1) > 1). We define the datasét as follows:
S1=(y>=x>2z),1l—¢),andforallj #1,5; = ((x >y >
z),¢). Thus the selected concept of agent kis= ¢y, and the
selected concept of any other agentjs= c¢x (which is also the
optimal concept). The construction &fis given in Tabldl. To
simplify computations, we do not divide the risk by the number of
points and agents, and thus the global risk is in the rdagen].
Thus,

T*(S) = R](Cx,s) = R1(CX,S1)+(’I'L - 1)Rj(cx, S]) (10)
=1+¢e+ (n—1)e =1+ ne, whereas
Ri(ey, §) = Ri(ey, S1) + (n = 1R;(ey, 55) (11)

=l—-ec+(n—-1)(2—¢€) =2n—-1—ne.

5In the limit case replac% with ¢, as any fraction is allowed.

Our RD mechanism returng = ¢y w.p. ofd(1) > %, and the
best thing it can do is returei” = ¢ w.p. of 1 — % The risk of the
mechanism can be lower-bounded as follows:

1,
RI(M)>7R1(cy,S)+nn
> %(Qn—l—ne)—&—%(l—l—ne) (from (T0).[T1))
:2—l—e+1+ne—l—e
n n

2 2 " "
3— 2t n-2e=3-24("-€)+(n-2
- (n—2)e . (6" =€)+ (n—2)e

:3—%—6”+(2n6+966)+n5_26

>3*2*6”+(37276”)7’L6
n n

2 1" 2 " *
—B3-2—)1+n)=3B-2— .
(3 o€ )(1 4 ne) = (3 o€ )7

O

Finally, we bound the total risk oM. Due to Lemmal9, the
outcome of M is an RDD, i.e., a lottery over al} possible du-
ples, anch possible dictators. We denote BD the event thai\t
selected any of the dictators. Note that due to Lerima 10, either
Pr(RD) > 1 — 18¢, or the approximation ratio o# is at least 3
(and thus we are done).

Assume therefore tha®r(RD) > 1 — 18¢. From Lemmd Il
we have thaR;(M(S), S|RD) > (3 — 2 — ¢")r*(S) (for S
as defined in the lemma). Denate = 18¢, ¢ = €’ + 6€
(2n 4 200)e.

Rr(M(S), S) = Pr(RD)R;(M(S), S|RD)
+ Pr(~RD)R;(M(S), S|-RD)
>Pr(RD)R; (M(S), S|RD)

>(1—¢) (3 - % - e") »*(S)  (from Lemma&T0I1)

>(1—¢) (3 - % —E+6€ — %e’ - 2&’) r™(S)
- (3= 2-¢) 4207
= (14€ —2()?) (3 2 e) r(S)

> (3—%—5) r*(S). :

This concludes our proof, as for ady we only need to set
small enough (i.e% large enough). Specifically, > 1 = 24200
will suffice. |

3.2 Two Weighted Agents

In this section, we restrict our analysis to datasets that are com-
posed of just two partial datasets. Dueltol[13] we know that the
WRD mechanism guarantees a 3-approximation ratio in the worst-
case. Moreover, we know that for this mechanism the analysis is
tight when the smaller weight approaches 0. As for a lower bound,
we know from [12] that it is at least 2. Theoréh 4 does not con-
tribute anything in this case, both because weights are non-uniform,
and becaus® — 2 for n = 2 is still 2.

Due to Lemmag]9 and 110, we know that in this case too, any
SP mechanism must be an RD (with high probability), but we still
have the freedom to define the probability of selecting each of the



two dictators, according to their weights.
Unless explicitly stated otherwise, we assume w.l.0.g.4hat
% < ws, and denotev = w;. We consider the HD and WRD

LEMMA 17. Consider a setting with only two concepts that dis-
agree on all pointc_, ¢4 }, and letM be an RD mechanism for
two agents. IfM guaranteesL-approximation in this restricted

mechanisms, as described in Secfion 2.1. Clearly both mechanismsetting (forZ > 2), then M is an L-approximation mechanism.

are SP.

Consider Theorerl2. A slight variation of its proof reveals a
more accurate bound. Lety,in = min; e w; be the weight of the
lightest agents (in the two agent caggyin = w).

THEOREM 12. WRD has an approximation ratio 8f— 2wmin,
and this bound is tight.

The following lemma will be useful in the analysis of our pro-

posed mechanisms. The proof is omitted due to space constraints.

LEMMA 13. LetS = (X, I,{Y;}icr, w) be some instance with

n agents. Suppose we remove an agent (w.l.0.g. agent 1), thereby

creating an instancé’ = (X, I’ {Y; }ier, W' = (w2, ..., wn)).

Letc’ = ¢*(9’) be the optimal classifier fos”’; then

Ri(,8) < 1

R (c*(9),S).

— w1y

THEOREM 14. HD has an approximation ratio oﬁ—z, and
this bound is tight.

Proof. The upper bound follows immediately from Lemna 13¢'as

Due to Lemma&l7, we can assume thatco completely disagree,
and that one of them is the optimal classifiér Assume w.l.0.g.
thatc™ = c1, and denote the optimal risk by .

Suppose first thab > 1 — w. This is the easy case, as it implies
that the better classifier is selected with greater probability. Assume
therefore thatv < 1—w, and consider mechanism HD. In the latter
case, we have th&;(HD(S),S) = 1 — r*. From Theoreri 14
we have that — r* < 1£%*, therefore

w?Rz(c1,S) + (1 — w)?Ry(cz, 9)

R/ (SRD(S),S) =

w? + (1 —w)?

_ i (L w)’ (=) w1 w)
- w? + (1 —w)? = w2 + (1 —w)?
. w2r*+(17w)(1+w)r* _ 1 -
= w2+(1_w)2 7211/2_211}4—1 .

1

= 9"
<ia" r,

where the last inequality exists sinze? — 2w + 1 has a minimum

i _ 1
inw = 3. | |

is selected by the remaining, heavier, agent. For tightness, consider By considering LemmB_17 together with Theorelm 1, it follows

the following scenario. Letv < % There are2 samples: X =
{z,y}. Agent 1 classifies both as “-”, and agent 2 classifias “+"
andy as “-". There are two classifier§,= {c, c_}, that classify
both samples as “+” and “-”, respectively. The optimal classifier is
obviouslyc_, whose risk isl — w. However, the heaviest dictator
is agent2, who choose%, (we assume a bias for tie-breaking).
The risk ofcy is2w + 1 — w = 1 + w. Thus, the approximation
ratio in this case ig?2. [ |

Next, we combine HD and WRD into a better SP mechanism.
LetT = % We define thehreshold dictato(TD) as follows.

e The TD mechanism behaves like WRD when> T and
like HD otherwise.

COROLLARY 15. TD has a worst-case approximation ratio of
/5, and this bound is tight.

Proof. Supposev < T'. Then from Theorerii 14 the approximation
ratio of TDis % < 1+T — /5. Now supposev > T'; then from
Theoreni IR the approximation ratio of TDds- 2w < 3 — 2T =

v/5. The lower bound is achieved far = 7. | |

Curiously, the optimal thresholfl is such that the ratio between
agents’ weights is exactk, the golden ratio.

A natural question is wheth@&ven bettelSP mechanisms exist,
and in particular mechanisms that match the lower boungl -ef
% = 2. Interestingly, the answer iges and we now give two
examples of such mechanisms.

e The square-weight random dictataiSRD) mechanism re-

11)2
turnse; w.p. o 2
J J

THEOREM 16. For two agents, the SRD mechanism has a worst-
case approximation ratio df.

Proof. We will use the following lemma, showing a reduction to a
simpler problem (proof omitted).

directly that there is another 2-approximation mechanism, using the
same randomization suggested by Meir, Procaccia and Rosenschein
for the two-function setting [12]. We refer to this mechanism as
MPR8[

3.3 More than Two Weighted Agents

In this final section we extend our results beyond the two-agent
setting, describing a worst-case optimal SP mechanism for any set
of weighted agents.

We first try the threshold approach. Theoiferh 12 supplies us with
an approximation ratio gf—2wmin for the WRD mechanism. Sup-
pose we have some SR _1-approximation mechanism,,_; for
n — 1 agents, wherel,_1 < 3. We can derive an SP mecha-
nism M., for n agents as follows: set a threshdld € (0, 1). If
all agents weigh more thaf,, use WRD. Otherwise, remove the
lightest agent and runt,, on the remaining data.

THEOREM 18. MechanismM,, is SP, and has an approxima-
tion ratio of max {3 — 2T, }f—%dn_l}.
The proof follows directly from Lemma13 and TheorEnh 12.

We can bound the worst-case approximation then, by setting

such that3 — 27,, = ¥ d,—1. As a special case for = 2,

we get the TD mechanism wity5 approximation (Theorefi 15).
Also, we know thatly = 2 (from Theoreni_16), and thus by setting
the threshold for three agentstg = % we get a (roughlyp —
S = 2. approximation mechanism for three weighted agents.
Similar threshold mechanisms can be iteratively derived for any
number of agents. While this mechanism already beats the upper
bound of3, it does not match the lower bound ®f- %

We finally turn to describing our final mechanism, which either
generalizes or beats all previous mechanisms for SP classification

with shared inputs. Let, = andaw, = 5 1

-.
icI P

wi
2(1—w;)?

5The mechanism, applied to our scenario, would select the lighter

and heavier agents w.p. gf5— and g:gz , respectively.




e The convex-weight random dictat¢CRD) mechanism, re-
turnsc; W.p. p; = awp}.
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THEOREM 19. The CRD mechanism has an approximation ra- #3-6797.

tio of aww + 1, which is at mos8 — 2.

We omit the proof due to space constraints. However, we note that
it is based on the convexity of the weight function, giving rise to
the name of the mechanism. When applied to two agents, the CRD
mechanism is similar (but not identical) to the MPR8 mechanism,
and can therefore be seen as a generalization of it. Moreover, all the
upper bounds in[12, 13], as well as the ones in this paper, follow
as special cases from Theorgni 19.

4. DISCUSSION

Our results have two primary implications on strategyproof clas-
sification. On the negative side, we have shown that the use of dic-
tators is necessary if one wants to maintain truthfulness in learning
algorithms, even when randomization is allowed. This means in
particular that the previously known bounds for SP classification
with uniform weights are tight.

On the positive side, we show that while dictators play a key role
in SP. classification, non-trivial selection of the dictator can lead to
improvements in the approximation ratio of the mechanism. We

demonstrated how simple threshold heuristics can be used to safely

discard low-weight agents, thus improving the worst-case approx-
imation ratio (although it is still suboptimal). Our main positive
result is the CRD mechanism, which matches the lower bound for
SP classification and therefore cannot be further improved. In ad-
dition to generalizing all previously known upper bounds for the
shared input setting (from_[12, 11.3]), our result shows that the uni-
form weight case is also the most difficult, and a better approxima-
tion ratio can be achieved as weights become more biased in favor
of some agents.

The learning-theoretic setting.
An important issue is the possibility to generalize from sampled
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APPENDIX

Proof of Theorei 12, fat = 2. For ease of exposition, we assume
thatw = - for some integem > 2. LetS = (S, S2) be a two-
agent dataset. We now define a similar dat&$éor n = m agents
with uniform weights:S] = 1, and for alli > 1, S; = S>. Now
suppose we use thei{fagent) WRD mechanism of’. Clearly,
WRD returnsc; w.p. of 2 = w, ande; w.p. =1 = 1 — w, thus
WRD(S’") = WRD(.9).

From Theorem 2.4 if [13R;(WRD(S"),S") <3— 2 =3 —
2w, and this bound is tight. For general the proof is a minor
variation of the proof in[[13]. |

Proof of Lemm&Zl3We denote by:* = ¢*(5) the optimal clas-
sifier for S. If ¢* = ¢’ we are done, therefore assume they differ.
Let B C X the points on whicte*, ¢’ disagree. The worst case is
when agent 1 completely agrees with i.e., whenR(c*,S) =0
(and in particular; = c*). Otherwise we can |ncrea§é(c*—s by
removing all data points on which they do not agree. We can sim-
ilarly assume that both classifiers make no errors¥ok B (since
this will only improve the approximation).

Denote byr(c, A), 7’ (c, A) the fraction of errors on points from
A C X according tow, w’ (in particularr(c, X) = Ry (c, S) and
r'(c, X) = Ry (c, S"). Note thatc’ must also agree with, on all
points outsideB, thus

r(c,X) < (l—wl)r/(cl,X)—le%. (12)
Also, sincec*, ¢’ disagree on alB, we have that
PR (€0 B) = (€. X) £ 7( %) = (R (€ B) @9
r'(c*,B) > % r'(c', B) 14)
r(e’, X) = (L= w)r' (", X) (15)
Therefore,
r(c, X)=(1- wl)‘%r’(c*, B) (from (@3),[15))
(1- w%% (from (1))
r(d, X) < (1—w)r'(c", X) +u @ (from (12),[13))
(1= w0 (€, %) + un 220
=r(c*, X)+ M (from (I8))
1 — W1
— (e x) (P i) L),
as required. O

Proof of Lemm&Td7Suppose at first that € {c1, c2}. In this case

we can effectively narrow our concept clas<fo= {c1, c2}, i.e.,

it is of size two. Now remove fronX all data points on which the
two selected concepts agree, iX!,= {z € X : c1(z) # c2(x)}.
Clearly this can only increase the approximation ratio, as it accen-

tuates the errors caused by selecting the wrong classifier. Note that

now both classifiers disagree on all data points; thus, we can take
another step in simplifying our scenario, by renaming labels and
classifiers so that; (z) = c4+(x) ="+"; c2(x) = c—(x) ="-"for

all data pointsc € X, and we are done.

We now turn to the case wheté ¢ {ci,c2}. We will show
how to alterS so it would fit into the restricted setting, while the
approximation ratio can only increase.

Let B C X be all data points on whicliz(z) # c¢*(z) (re-
call thatw: > wi). We now create a new datas§t in which
the labels of agent 2 foB are flipped, i.e.Yz(z) = ¢*(x) for
all z. In theA new datgseﬁ‘, ¢* is the best concept for agent 2,
and thusc*(S) = ¢2(S). From the previous case we have that
Rr(M(S),S) < LR;(c*,S). Denote byr(c), #(c) the risk ofc
on S, S, respectively. Sinc#, remains unchanged, (c¢) = r1(c).

Suppose that1(S) returnses, ¢z W.p. p1, p2. Then onM(5S)
has the same probabilities (weights are unchanged), extept
returned instead af;, as this is the best classifier for agent 2 in the
new dataset.

Note thatY>, ¢* disagree on at mogB| points, as otherwise
agent 2 would have originally preferretl overcs. Thusra(c2) <

|B|. Also, in the new dataset we remove theéss errors, thus
f2(c") = 0,r2(c") = |BJ.
7(c") = w11 (") + w20 (16)
= wiri(c”) + w2 (r2(c”) — |B]) = r(c") — w2|B]
r(c2) < wiri(e2) + wara(c2) a7)
< wi (ri(c”) + [Bl) + w2|B| = [B| + wiri(c”)
= |B| + wif1(c") + wara(c”) = 7(c*) + | B|
7(c1) = wit1(er) + wata(er) (18)
> wiri(e1) + w2 (r2(c1) — |B|) = r(c1) — w2|B]
Finally:
r(M(S)) = pir(cr) + par(ca) (from (11),[18):)
< p1 (F(er) + w2l B|) + pa (F(c”) + | BI)
= p17(c1) + pai(c”) + | Bl (prw2 + p2)
= #(M(S)) + |Bl(prw2 + pa (w1 + w2))
< Li(c") + 2wz |B| < L(7(c") + w2|B|) (w2 =wr)
=L-r(c"), (from (16))
which mean®R;(M(S), S) < L-Ry(c*, S), asrequired. [

Proof of Theorerfi 19.

LEMMA 20. aw <2 — 2.

1
Proof. Let g(z) = 5=5;-
> ier wi = 1, we have that

Note thatg is convex. Also, since

1 2
- < ° <
~ < Zwl <1 (19)
el
= Tpi= Twig—gy, = S wiatw
el el
>g Zw~ cw; | = -
B i€l 2-23 i wi
(from Jensen’s inequality)
1
> from
2 5oy (from (I9))
thusaw <2 — 2 O



Let F be the set of all labeling functions: X — {—,+}. In
particularC C F. We denote byl(f, f') the number of disagree-
ments betweerf andf’. d is a pseudo-metric, and thus symmetric
and satisfies the triangle inequality (T.1.) (sSe€ [13] for more details).

fi, ci denote the labels of ageni.e., fi = Y;), and the classifier
in C that is the closest to them (i.e.< C that minimizesi(c, f;)).
For anyc, it holds that

S) = sz‘Rz‘(Q S) = Zwid(c f

iel i€l

Note that for alli, d(c;, c*) < 2d(f;,c*), since otherwise” is
closer tof; thanc;.

R (CRD(S),S) => piRi(ci, 8) =Y _pi Y wjd(ci, f;)

i€l i€l jeI
=> | Do pawsd(ci, £3) + piwid(es, f2)
il \ j#i
<Y D D paw;(d(es, ) +d(c", f5)) + pawsd(c”, fi)
iel JFi
(T.1.)
= Zpiwjd(cu ij + Z szwj fi)
iel J#t i€l jel
W; *
= Qw ; md(C“ )1 —w;)
+ ZU’J 5 fi) sz
Jel i€l
SO‘WZ?iZd(fiv +Zw1 " 1)
i€l jeI
= (aw +1) ij = (aw + 1)Rz(c", S)
JjeI

<(s-2)re)
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