
Process Symmetry in Probabilistic Transducers1

Shaull Almagor2

Computer Science Department, Technion, Israel3

shaull@cs.technion.ac.il4

Abstract5

Model checking is the process of deciding whether a system satisfies a given specification. Often,6

when the setting comprises multiple processes, the specifications are over sets of input and output7

signals that correspond to individual processes. Then, many of the properties one wishes to specify8

are symmetric with respect to the processes identities. In this work, we consider the problem of9

deciding whether the given system exhibits symmetry with respect to the processes’ identities.10

When the system is symmetric, this gives insight into the behaviour of the system, as well as allows11

the designer to use only representative specifications, instead of iterating over all possible process12

identities.13

Specifically, we consider probabilistic systems, and we propose several variants of symmetry.14

We start with precise symmetry, in which, given a permutation π, the system maintains the exact15

distribution of permuted outputs, given a permuted inputs. We proceed to study approximate16

versions of symmetry, including symmetry induced by small L∞ norm, variants of Parikh-image17

based symmetry, and qualitative symmetry. For each type of symmetry, we consider the problem of18

deciding whether a given system exhibits this type of symmetry.19

2012 ACM Subject Classification Theory of computation→ Verification by model checking; Theory20

of computation → Abstraction; Theory of computation → Concurrency21

Keywords and phrases Symmetry, Probabilistic Transducers, Model Checking, Permutations22

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.4323

Funding Shaull Almagor : Supported by a European Union’s Horizon 2020 research and innovation24

programme under the Marie Skłodowska-Curie grant agreement No 837327.25

Acknowledgements The author thanks Gal Vardi for discussions on the motivation for this work.26

1 Introduction27

A fundamental approach to automatic verification is model checking [4], where we are given28

a system and a specification, and we check whether all possible behaviours of the system29

satisfy the specification. In model checking of reactive systems, the specification is over sets30

of inputs I and outputs O, and the system is an I/O transducer, which takes sequences of31

inputs in 2I , and responds with an output in 2O. Then, model checking amounts to deciding32

whether for every input sequence, the matching output sequence generated by the transducer,33

satisfies the specification.34

In practice, and especially in verification of concurrent systems, the input and output35

sets have some correspondence. For example, in an arbiter for k processes, the inputs are36

typically I = {i1, . . . , ik}, where ij is interpreted as “a request was generated by Process37

j”, and the outputs are O = {o1, . . . , ok}, where oj is interpreted as “Process j was granted38

access”. In such cases, specification often end up having symmetric repetitions of a similar39

pattern. For example, we may wish to specify that in our arbiter, if Process j1 generated a40

request before Process j2, then a grant for j1 should be given before a grant for j2. However,41

in order to specify this in e.g., LTL (Linear Temporal Logic), we would have to explicitly42

write this statement for every pair of processes j1, j2. In the worst case, this could entail a43

blowup of k! in the size of the formula, which incurs a further exponential blowup during44

model-checking algorithms.45

© S. Almagor;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 43; pp. 43:1–43:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9021-1175
mailto:shaull@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.43
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Process Symmetry in Probabilistic Transducers

This drawback, however, vanishes when we consider a symmetric system: intuitively, a46

system is symmetric if permuting the input signals generates an output sequence of similarly47

permuted outputs. If a system satisfies this property, then it is enough to check whether it48

satisfies a representative specification. Indeed, any permutation of the processes is guaranteed49

to be equivalently satisfied.50

Unfortunately, deterministic systems are unlikely to be completely symmetric, unless51

they are very naive (e.g., no grants are ever given). Indeed, tie-breaking in deterministic52

systems has an inherent asymmetry to it. In probabilistic systems, however, no asymmetry is53

needed to break ties – one can randomly choose a result.54

In this paper, we consider several notions of symmetry for probabilistic transducers,55

and their corresponding decision procedures. We start with the most restrictive version of56

symmetry, in which a transducer T is symmetric under a permutation if the distribution57

of outputs that are generated for an input sequence x is identical to the distribution of58

permuted outputs for the permuted input sequence (Section 3). We show that deciding59

whether a transducer is symmetric under a given permutation is decidable in polynomial60

time, and use basic results in group theory to give a similar result for deciding whether a61

transducer is symmetric under all permutations in a permutation group.62

We then proceed to study approximate notions of symmetry, in order to capture cases63

where a system is not fully symmetric, but still may exhibit some symmetrical properties. On64

the negative side, using results on probabilistic automata, we show that an L∞ approximation65

variant of symmetry results in undecidability. On the positive side, we study two variants of66

symmetry that only take into account the Parikh image of the output signals, and we are67

able to use results on probabilistic automata with rewards to obtain efficient decidability of68

symmetry for these variants (Section 4).69

Finally, we study a qualitative version of symmetry, which offers a coarse “nondeterministic”70

approximation of symmetry (Section 5). We show that deciding whether a system is71

qualitatively symmetric is PSPACE complete.72

The notion of symmetry is not only appealing for symmetry reductions in specification,73

but also as a standalone feature for the explainability of model checking: standard model-74

checking algorithms can output a counterexample whenever a system does not satisfy its75

specification. This gives the designer insight as to what is wrong with either the system or76

the specification. On the other hand, when the result of model checking is that a system77

does satisfy its specification, no additional information is typically given. While this is78

“good news”, a designer often wants some information as to “why” the system is correct. In79

particular, the designer may be concerned that the specifications were too easy to satisfy (e.g.,80

in vacuous specifications [1]). In this case, symmetry provides some information. Indeed,81

symmetry can be easily witnessed (as we show in Remark 4), so the designer can be convinced82

that any weakness of the specification, or any flaw of the system, is not biased toward a83

specific process, and will arise regardless of a specific order of processes. In addition, it shows84

that if the system satisfies e.g., liveness properties, then it satisfies them with the same “good85

event intervals” regardless of process identities.86

Related work87

Process symmetry [3, 8, 6, 12] and more general symmetry reductions [16, 17, 19] have88

been studied since the 90’s, typically in the context of alleviating the state-explosion prob-89

lem. Symmetry can either be specified by the designer or user [13,24,25], or detected90

automatically [15,16,32].91

A close approach to our work here is [12], where the problem of detecting process92

S. Almagor 43:3

symmetries is studied. There, however, parametrized deterministic systems are studied,93

which shift the focus to the pattern of given symmetries (rather than our fixed-length94

permutations), and does not concern probabilities.95

Symmetry in the probabilistic setting was studied in [11, 5], where model checking of96

probabilistic systems exploits known symmetries to avoid a state blowup by considering a97

quotient of the system under the symmetry.98

We remark that the works above typically focus on exact symmetries, and use them to99

reduce the state space, whereas the focus of this paper is to decide whether a symmetry100

exists, for various types of (not necessarily exact) symmetries, and to use the symmetry to101

avoid blowup in the specification, as well as to give the user insight regarding the correctness102

of the system.103

Due to lack of space, some proofs appear in the appendix.104

2 Preliminaries105

Probabilities and Distributions106

Consider a finite set S. A distribution over S is a function µ : S → [0, 1] such that107 ∑
s∈S µ(s) = 1. We denote the space of all distributions over S by ∆(S). Given a distribution108

µ, an event is a subset1 E ⊆ S, and its probability under µ is Pr(E) =
∑
e∈E µ(e). For an109

element s ∈ S, the Dirac distribution 11[s] is given by 11[s](r) =
{

1 r = s,

0 r 6= s.
The support of110

a distribution µ is Supp(µ) = {s ∈ S : µ(s) > 0}.111

Given sets S1, . . . , Sn and distributions µ1, . . . , µn such that µi ∈ ∆i for every 1 ≤ i ≤ n,112

a natural product distribution µ is induced on the product space S1 × · · · × Sn where113

µ(s1, . . . , sn) =
∏n
i=1 µi(si).114

Probabilistic Transducers and Automata115

Consider two finite sets I and O of input and output signals, respectively. An I/O probabilistic116

transducer (henceforth just transducer) is T = 〈I,O, S, s0, δ, `〉 where S is a finite set of117

states, s0 is an initial state, δ : S × 2I → ∆(S) is a transition function, assigning to each118

(state,letter) pair a distribution of successor states, and ` : S → 2O is a labelling function.119

For a word x = i1 · i2 · · · in ∈ (2I)+, a run of T on x is a sequence ρ = q0, q1, . . . , qn where120

q0 = s0, and the probability of the run ρ is
∏n−1
j=0 δ(qj , ij+1)(qj+1). Note that indeed this121

induces a probability measure µ on {s0} × Sn via the product distribution.122

A run ρ is proper if ρ ∈ Supp(µ). That is, if it has positive probability. We denote the123

space of proper runs by runs(T , x). In the following, we usually refer only to proper runs, and124

we omit the term “proper” when it is clear from context. We extend the labelling function `125

to runs by `(ρ) = `(q1) · `(q2) · · · `(qn). Observe that we ignore the labelling of the initial126

state, and only consider nonempty words, to avoid edge cases.127

For x ∈ (2I)+ and y ∈ (2O)+ such that |x| = |y|, we denote by T (x) = y the event128

{ρ ∈ runs(T , x) : `(ρ) = y}. Thus, Pr(T (x) = y) is the probability that the output129

generated by T on input x is exactly y. We denote by x⊗ y ∈ (2I∪O)ω the combined word130

(i1 ∪ o1) · (i2 ∪ o2) · · · (in ∪ on).131

1 In general E needs to be a measurable subset, but since we only consider finite sets, any subset is
measurable.

FSTTCS 2020

43:4 Process Symmetry in Probabilistic Transducers

The sets I and O are called corresponding signals if I = {i1, . . . , ik} and O = {o1, . . . , ok}.132

Intuitively, for 1 ≤ j ≤ k we think of ij as a request generated by a process j, and of oj as a133

corresponding grant generated by the system.134

A probabilistic automaton (PA) is A = 〈Q,Σ, δ, q0, F 〉 where Q is a finite set of states, Σ135

is a finite alphabet, δ : Q × Σ → ∆(Q) is a probabilistic transition function, q0 ∈ Q is an136

initial state, and F ⊆ Q is a set of accepting states. Similarly to transducers, an input word137

x ∈ Σ∗ induces a probability measure on the set runs(A, x) of runs of A on x. Then, we138

denote by A(x) the probability that a run of A on x is accepted, i.e. ends in a state in F .139

Permutations140

We assume familiarity with basic notions in group theory (see e.g. [2]). A permutation of the141

set [k] = {1, . . . , k} is a bijection π : [k]→ [k]. A standard representation of permutations is142

by a cycle decomposition, where, for example, the cycle (1 2 7) represents the permutation143

π where π(1) = 2, π(2) = 7, π(7) = 1, and for all other elements we have π(j) = j. The set144

of all permutations on [k], equipped with the functional composition operator ◦ forms the145

symmetric group Sk. Any subgroup of Sk is referred to as a permutation group. A generating146

set of a permutation group G is a finite set X = {π1, . . . , πm} such that every permutation147

τ ∈ G can be expressed as a composition of the elements in X. For such a set X, we denote148

the group generated by it by 〈X〉. It is well known that {(1 2), (1 2 . . . k)} is a generating149

set of Sk (see e.g., [2]).150

Consider corresponding signals I = {i1, . . . , ik} and O = {o1, . . . , ok}, and let π ∈ Sk.151

For a letter i = {ij1 , . . . , ijm} ∈ 2I , we define π(i) = {iπj1,...,iπ(jm)}. That is, π permutes152

the signals given in i.2 Then, for a word x = i1 · i2 · · · in ∈ (2I)+, we define π(x) =153

π(i1) · π(i2) · · ·π(in). Similar definitions hold for O. Unless explicitly stated otherwise, we154

henceforth assume I and O are corresponding signals.155

3 Symmetric Probabilistic Transducers156

Let T = 〈I,O, S, s0, δ, `〉 be an I/O transducer over I = {i1, . . . , ik} and O = {o1, . . . , ok},157

and let π ∈ Sk. We say that T is π-symmetric if for every x ∈ (2I)+ and y ∈ (2O)+ it158

holds that Pr(T (x) = y) = Pr(T (π(x)) = π(y)). That is, T is π-symmetric if whenever we159

permute the input by π, the resulting distribution on outputs is permuted by π as well.160

I Example 1. Consider a Round-Robin arbiter over three processes, as depicted in Figure 1.161

At each state, the arbiter looks for a request from a single processor j, and grants it if it is162

on, then moves to a state corresponding to process j + 1 (mod 3). Observe that this is a163

deterministic transducer, except that the initial state is unspecified.164

Consider the case where we let the state marked 001 be initial, which corresponds to165

letting the first process start. In this case, the transducer is not π-symmetric for π = (1 2 3).166

Indeed, the input word 100 will generate output 100, but its permutation π(100) = 010167

generates output 000 6= π(100).168

However, if we introduce a probabilistic initial state, that chooses each state of 100, 010, 001169

as the next state, each with probability 1
3 , the transducer becomes π-symmetric for any170

π ∈ S3. J171

2 Formally, we would actually need I to be an ordered set. However, the order will be implied by the
naming convention, so we let I be a set.

S. Almagor 43:5

000

010

000

001

000

100
·1·

·0·

·1·

·0·

· · 1

· · 0

· · 0

· · 1

1 · ·
0 · ·

1 · ·
0 · ·

Figure 1 A transducer for a Round Robin arbiter. The labels on the transitions and states are
the characteristic vectors of the labels, with · as placeholders. Thus, e.g., 100 is {i1}, and · · 1 is any
i such that i3 ∈ i. The initial state is unspecified, see Example 1.

Consider a permutation group G = 〈X〉 generated by X = {π1, . . . , πm}. We say that T172

is G-symmetric if it is π-symmetric for every π ∈ G. Toward understanding symmetry, we173

start by showing that it is enough to consider symmetry under the generators.174

I Lemma 2. Consider an I/O transducer T over I = {i1, . . . , ik} and O = {o1, . . . , ok}. If175

T is π-symmetric and τ -symmetric for π, τ ∈ Sk, then T is π ◦ τ -symmetric.176

Proof. Consider x ∈ (2I)+ and y ∈ (2I)+, we wish to show that Pr(T (x) = y) =177

Pr(T (π(τ(x))) = π(τ(y))). Since T is τ -symmetric, then Pr(T (x) = y) = Pr(T (τ(x)) = τ(y)).178

Next, since T is π-symmetric, then applying the definition for the input τ(x) ∈ (2I)+ and179

τ(y) ∈ (2O)+, we have that Pr(T (τ(x)) = τ(y)) = Pr(T (π(τ(x))) = π(τ(y))), and so overall180

Pr(T (x) = y) = Pr(T (π(τ(x))) = π(τ(y))) and we are done. J181

An immediate corollary of Lemma 2 is that in order to check whether T is G-symmetric, it182

suffices to check whether it is symmetric with respect to the generators of G.183

I Corollary 3. Consider an I/O transducer T and a permutation group G with generators184

X, then T is G-symmetric iff it is π-symmetric for every π ∈ X.185

I Remark 4 (Symmetry for Explainability). Corollary 3 is key to using symmetry for explain-186

ability of model checking. Indeed, it shows that we can convince a designer that a system is187

e.g., Sk-symmetric by showing that it is symmetric under the two generators. That is, the188

witness for symmetry consists of demonstrating symmetry on two permutations. As discussed189

in Section 1, once the designer is convinced the system possesses symmetric properties, she190

gains some insight to the possible reasons that make the system correct, or to possible191

behaviour of bugs, when the system is incorrect. J192

The fundamental problem about symmetry of probabilistic transducers is whether a193

transducer is π-symmetric for a given permutation π. We now show that this problem can194

be solved in polynomial time.195

I Theorem 5. The problem of deciding, given an I/O transducer T and a permutation196

π ∈ Sk, whether T is π-symmetric, is solvable in polynomial time.197

Proof. Given two probabilistic automata A and B over the alphabet Σ, the problem of198

determining whether A(x) = B(x) for every x ∈ Σ∗, dubbed the equivalence problem, is199

solvable in polynomial time [7, 15, 18]. Our proof is by reduction of the problem at hand to200

the equivalence problem for probabilistic automata.201

FSTTCS 2020

43:6 Process Symmetry in Probabilistic Transducers

Consider an I/O transducer T = 〈I,O, S, s0, δ, `〉 over I = {i1, . . . , ik} and O =202

{o1, . . . , ok}, and let π ∈ Sk. We construct from T two PAs A and B. Intuitively, A203

mimics the behaviour of T , by reading words over 2I∪O, and accepting a word w ∈ (2I∪O)+
204

with probability µ iff T , when reading the inputs that appear in w, generates the outputs205

that appear in w with probability µ. The PA B works exactly like A, but permutes both the206

inputs and outputs by π.207

Formally, A = 〈S ∪ {q⊥}, 2I∪O, η, s0, S〉 and B = 〈S ∪ {q⊥}, 2I∪O, ζ, s0, S〉 where q⊥ is208

a new state, and the transition functions are defined as follows. Let q ∈ S and σ = i ∪ o209

with i ∈ 2I and o ∈ 2O, and let Vp =
∑
p∈S, `(p)=o δ(q, i)(p) be the probability assigned by210

T to seeing a state labelled o after reading i in state q, then η(q, σ) ∈ ∆(S ∪ {q⊥}) is the211

following distribution:212

η(q, σ)(p) =


δ(q, i)(p) if p ∈ S and `(p) = o
0 if p ∈ S and `(p) 6= o
1− Vp if p = q⊥

213

In addition, η(q⊥, σ)(q⊥) = 1 (so q⊥ is a rejecting sink). We demonstrate the construction of214

A in Figures 2a and 2b.215

s0
∅

s1
{o1}

s2
{o1}

s3
{o1, o3}

{i1, i2}
0.
2

0.5
0.3

(a) Transition in T

s0

s1

s2
s⊥

s3

{i1, i2, o1}

{i1 , i2 , o1 , o3}

0.2

0.5

0.3

0.3

0.7

(b) Transition in A

s0

s1

s2
s⊥

s3

{i3, i1, o3}

{i3 , i1 , o3 , o2}

0.2

0.5

0.3

0.3

0.7

(c) Transition in B

Figure 2 A transition in a transducer T over I = {i1, i2, i3} and O = {o1, o2, o3}, and the
corresponding transitions in A and B, under the permutation π = (1 2 3). Observe that the transition
in B corresponds to the inverse permutation, π−1 = (3 2 1), so that e.g., π({i3, i1}) = {i1, i2}.

The construction of B is similar, but accounts for the permutation π. Let q ∈ S and216

σ = i ∪ o with i ∈ 2I and o ∈ 2O, and let Up =
∑
p∈S, `(p)=π(o) δ(q, π(i))(p) be the217

probability assigned by T to seeing a state labelled π(o) after reading π(i) in state q, then218

ζ(q, σ) ∈ ∆(S ∪ {q⊥}) is the following distribution:219

ζ(q, σ)(p) =


δ(q, π(i))(p) if p ∈ S and `(p) = π(o)
0 if p ∈ S and `(p) 6= π(o)
1− Up if p = q⊥

220

In addition, ζ(q⊥, σ)(q⊥) = 1 (so q⊥ is a rejecting sink). We demonstrate the construction of221

B in Figures 2a and 2c.222

Consider words x ∈ (2I)+ and y ∈ (2O)+. Since q⊥ is the only rejecting state in223

both A and B, then by construction it is easy to see that A(x ⊗ y) = Pr(T (x) = y) and224

B(x ⊗ y) = Pr(T (π(x)) = π(y)). Thus, we have that A and B are equivalent iff T is225

π-symmetric, and since equivalence can be decided in polynomial time, we are done. J226

Combining Theorem 5 with Corollary 3, we have the following.227

S. Almagor 43:7

I Corollary 6. The problem of deciding, given an I/O transducer T and a finite set of228

generators X = {π1, . . . , πm}, whether T is 〈X〉-symmetric, is solvable in polynomial time.229

In particular, since the symmetric group Sk is generated by two permutations {(1 2), (1 2 . . . k)},230

we have the following.231

I Corollary 7. The problem of deciding, given an I/O transducer T , whether T is Sk-232

symmetric, is solvable in polynomial time.233

4 Approximate Symmetry234

While aspiring to obtain symmetric systems is noble, in practice exact symmetry may be235

too strong a requirement, for example if the source of randomness supplies binary bits, and236

one needs e.g., 1
3 probability, then only an approximate probability can be used. Thus, it is237

reasonable to seek approximate notions of symmetry.238

4.1 L∞ Symmetry239

The most straightforward approach toward approximate symmetry in probabilistic transducers240

is induced by the the L∞ norm, as follows. Let T be an I/O-transducer, let π ∈ Sk, and let241

ε > 0. We say that T is (ε, π)-symmetric if |Pr(T (x) = y) − Pr(T (π(x)) = π(y))| ≤ ε for242

every x ∈ (2I)+ and for every y ∈ (2O)+. That is, permuting the inputs by π perturbs the243

output distribution by at most ε.244

Unfortunately, as we now show, approximate symmetry is undecidable.245

I Theorem 8. The problem of deciding, given an I/O transducer T a permutation π ∈ Sk246

and ε > 0, whether T is (ε, π)-symmetric, is undecidable.247

Proof. The emptiness problem for PA is to decide, given a PA A over Σ and a threshold248

λ ∈ [0, 1], whether there exists a word w ∈ Σ∗ such that A(w) > λ. This problem is known249

to be undecidable [14, 13, 7].250

We show that approximate symmetry is undecidable via a reduction from a restriction of251

the emptiness problem (or rather the complement thereof), where the given PA is over the252

alphabet {0, 1}. The problem remains undecidable under this restriction, as we can encode253

any larger alphabet Γ using fixed-length sequences in {0, 1}d, such that while reading the d254

symbols that compose a single letter in Γ, the states are not accepting (and hence we do not255

introduce a word whose acceptance probability is above λ).256

We start with an intuitive description of the reduction, depicted in Figure 3.

sinitsmids⊥

s>
∅

s⊥
{o1, o2}

2I

{i1}

∅, {i1}

{i1}, {i1, i2}
{i2} {i1}, {i1, i2}

{i1}, {i1, i2}A

Figure 3 The transducer constructed from a PA. The black squares denote probabilistic branching.
257

Consider a PA A over the alphabet Σ = {0, 1}. We construct a transducer T over258

I = {i1, i2} and O = {o1, o2} which has two components. Initially, if T sees the input {i2},259

FSTTCS 2020

43:8 Process Symmetry in Probabilistic Transducers

it moves to a component which mimics A using the alphabet {∅, {i2}} instead of {0, 1}. At260

this stage, all the states are marked with the output {o1, o2}. If at any point the input signal261

i1 is given, i.e. the letter {i1} or {i1, i2}, then T proceeds to a state labelled {o1, o2} from262

non-accepting states of A, and to a state labelled ∅ from accepting states. Thus, a word263

of the form {i2} · x · {{i1}, {i1, i2}}∗ with x ∈ {∅, {i2}}n would yield an output of the form264

∅n+1 · ∅∗ with probability A(x) and of the form ∅n+1 · {o1, o2}∗ with probability 1−A(x).265

Observe that both output possibilities are invariant under the permutation (1 2).266

If, initially, T sees the input {i1}, it moves to a state labelled ∅, which loops as long267

as {i1} or ∅ are seen. Then, if {i2} or {i1, i2} is seen, it moves to a sink labelled {o1, o2}.268

Essentially, this component mimics the output sequence of a rejecting run of A in the first269

component, under the permutation (1 2). Hence, taking ε = λ, we have that T is (ε, (1 2))-270

symmetric iff there does not exist a word x such that A(x) > λ.271

We proceed to give the precise reduction. Consider a PA A = 〈Q,Σ, δ, q0, F 〉 with272

Σ = {0, 1}, we construct an I/O transducer T = 〈I,O, S, sinit, η, `〉 as follows. The states273

of T are S = Q ∪ {smid, sinit, s>, s⊥}, where s⊥ /∈ Q, and the input and output sets are274

I = {i1, i2} and O = {o1, o2}. The labelling function is given by `(q) = ∅ for all q ∈ Q,275

`(s⊥) = O = {o1, o2}, and `(sinit) = `(smid) = {∅}. The transition function, as depicted in276

Figure 3, is defined as follows.277

First, for every q ∈ Q and i ∈ {∅, {i2}}, we have η(q, i) = δ(q, i), where we identify278

{∅, {i2}} with {0, 1} in an arbitrary bijective manner. Next, if q ∈ F , then η(q, {i1}) =279

η(q, {i1, i2}) = 11[s>], and if q /∈ F then η(q, {i1}) = η(q, {i1, i2}) = 11[s⊥]. The remaining280

transitions are281

η(sinit, {i1}) = 11[smid], η(smid, ∅) = η(smid, {i1}) = 11[smid],
η(sinit, {i2}) = 11[q0], η(smid, {i2}) = η(smid, {i1, i2}) = 11[s⊥],
η(sinit, ∅) = η(sinit, {i1, i2}) = 11[s⊥],

282

and for every i ∈ 2I we have η(s⊥, i) = 11[s⊥] and η(s>, i) = 11[s>].283

Let π = (1 2) and ε = λ. Keeping our identification of {∅, {i2}} with {0, 1}, we claim284

that there exists a word x′ ∈ {∅, {i2}}∗ such that A(x′) > λ iff there exists words x ∈ (2I)+
285

and y ∈ (2O)+ such that |Pr(T (x) = y) − Pr(T (π(x)) = π(y))| > ε (i.e. T is not (ε, π)-286

symmetric). Observe that ` assigns only the labels ∅ and {o1, o2}, both of which are invariant287

under π. Thus, the latter condition becomes288

|Pr(T (x) = y)− Pr(T (π(x)) = y)| > ε. (1)289

We now turn to prove correctness. For the first direction, let x′ ∈ {∅, {i2}}∗ such that290

A(x′) > λ, and consider the word x = {i2} · x′ · {i1, i2}. By the construction of T , after291

seeing {i2}, there is only a single run of T which proceeds to q0. From there, T mimics the292

behaviour of A on x′. Thus, after reading x′, the distribution of states has probability A(x)293

for states in F , and probability 1−A(x) in states in Q \ F . Note that up until then, only294

the label ∅ is seen, so the distribution of outputs is 11[∅|x′|+1]. Then, after reading {i1, i2},295

the distribution of outputs give probability A(x) to ∅|x′|+2, and 1−A(x) to ∅|x′|+1 · {o1, o2}.296

Now consider π(x) = {i1} · π(x′) · {i1, i2}. Upon reading {i1}, the single run of T297

arrives at smid. Then, since x′ ∈ {∅, {i2}}∗, we have that π(x′) ∈ {∅, {i1}}∗, so the run298

of T stays in smid. Finally, reading {i1, i2}, the run moves to s⊥. Therefore T (x) gives299

probability 1 to the output ∅|x′|+1{o1, o2}. Thus, for the output y = ∅|x′|+2, we have that300

|Pr(T (x) = y)− Pr(T (π(x)) = y)| = |A(x)− 0| > λ = ε, so T is not (ε, π)-symmetric.301

For the converse direction, assume x, y are such that |Pr(T (x) = y)−Pr(T (π(x)) = y)| > ε.302

We start by eliminating candidates for such x and y. First, observe that if x starts with ∅ or303

{ß1,ø1} (both of which are invariant under π), we have T (x) gives probability 1 to the output304

S. Almagor 43:9

`(q⊥)|x| = {o1, o2}|x|, and so T (x) = T (π(x)), hence |Pr(T (x) = y)− Pr(T (π(x)) = y)| = 0305

for all y, so this case cannot occur.306

Next, we claim that without loss of generality, we can assume x starts with {i2}. Indeed,307

if x starts with {i1}, then π(x) starts with {i2}. Since π(π(x)) = x, we could start the308

argument with π(x), while maintaining Equation (1).309

Now, if x is of the form {i2} · {∅, {i2}}n, then T (x) gives probability 1 to the output310

∅n+1, but π(x) is now of the form {i1} · {∅, {i1}}n, which also induces the same distribution,311

this case cannot occur as well.312

It follows that x is of the form {i2} · x′ · {{i1}, {i1, i2}} · (2I)∗ where x′ ∈ {∅, {i2}}n.313

We claim that A(x′) > λ. Indeed, as we observed above, T (x) gives probability A(x′) to314

the output ∅|x| and probability 1−A(x′) to the output ∅|x′|+1 · {o1, o2}|x|−|x
′|−1. However,315

T (π(x)) gives probability 1 to the output ∅|x′|+1 · {o1, o2}|x|−|x
′|−1. Thus, there are only two316

possibilities for y in order for Equation (1) to hold: if y = ∅|x|, we have317

λ = ε < |Pr(T (x) = y)− Pr(T (π(x)) = y)| = |A(x′)− 0| = A(x′)318

and if y = ∅|x′|+1 · {o1, o2}|x|−|x
′|−1, then319

λ = ε < |Pr(T (x) = y)− Pr(T (π(x)) = y)| = |1−A(x′)− 1| = A(x′)320

So in either case A(x′) > λ, and we are done. J321

A-priori, the fact that (ε, π)-symmetry is undecidable does not mean that approximate322

symmetry for an entire permutation group is undecidable, nor that for fixed ε the problem is323

undecidable. Unfortunately, however, the proof of Theorem 8 uses the permutation group S2,324

whose only nontrivial permutation is (1 2). Moreover, the reduction uses the given threshold325

λ as is, by setting λ = ε, and the emptiness problem is known to be undecidable even when326

λ is a fixed number in (0, 1). Thus, we have the following.327

I Corollary 9. For every ε ∈ (0, 1), the problem of deciding, given an I/O transducer T328

whether T is (ε, π)-symmetric for every π ∈ Sk, is undecidable.329

I Remark 10 (Composability). While undecidability of (ε, π)-symmetry is unfortunate, the330

reader may take solace in the fact that (ε, π)-symmetry is anyway not preserved under331

composition. Indeed, if T is (ε, π)-symmetric and (δ, τ)-symmetric, it only guarantees that332

it is (δ + ε, τ · π)-symmetric. Thus, in order to ensure symmetry over a group, a sound333

method would have to take into account the diameter of the group. This, however, may lose334

completeness. Thus, (ε, π)-symmetry is not a robust notion.335

4.2 Parikh Symmetry336

The notions of symmetry studied so far have a “letter-by-letter” flavour, where we compare337

the distribution of specific outputs for a given inputs. We now turn to study a different338

notion of symmetry, that abstracts away the order of the output symbols, and draws instead339

on the Parikh image of the computation.340

Let I = {i1, . . . , ik} and O = {o1, . . . , ok}. For a word y = o1 · · ·on ∈ 2O, and 1 ≤ j ≤ k,341

define #(y, j) = |{m : oj ∈ om}| to be the number of occurrences of oj in y. Then, we342

define the Parikh image3 of y to be P(y) = (#(y, 1), . . . ,#(y, k)) ∈ Nk.343

3 Observe that this is not the standard Parikh image, in that it is the image with respect to signals in O,
rather than to letters in 2O.

FSTTCS 2020

43:10 Process Symmetry in Probabilistic Transducers

Given a permutation π and a vector a = (a1, . . . , ak) ∈ Nk, we define π(a) = (aπ−1(1), . . . , aπ−1(k)).344

Note that we use π−1 so that the following relation holds: if e.g., π(1) = 3, then index 3 in345

π(a) contains a1.346

Consider an I/O transducer T and a word x ∈ (2I)+. The outputs of T on x induce347

a probability measure on (a finite subset of) Nk, where for a vector a ∈ Nk we have348

Pr(P(T (x)) = a) =
∑
y:P(y)=a Pr(T (x) = y). We can thus also consider the expected value349

of the Parikh image, given by E[P(T (x))] =
∑
y Pr(T (x) = y)P(y) (where the product is350

element-wise, so this is a vector in Nk).351

Parikh images give rise to two measures of symmetry: given a permutation π, we say352

that T is π-Parikh distribution symmetric if for every x ∈ (2I)+ and every a ∈ Nk we353

have Pr(P(T (x)) = a) = Pr(P(T (π(x))) = π(a)). That is, every word x induces the same354

distribution of Parikh images as π(x) does for the permuted images. A weaker notion of355

symmetry uses expectation: we say that T is π-Parikh expected symmetric if for every356

x ∈ (2I)+ we have E[P(T (x))] = π(E[P(T (π(x)))])357

Note that Parikh-symmetry assumes the number of occurrences of a certain output signal358

is meaningful. This is relevant when the output signals measure e.g., number of grants for359

requests, but makes less sense when the outputs represent e.g., a choice between channels360

through which a message is routed.361

Our algorithmic results about Parikh symmetry use a translation to probabilistic reward362

automata (PRA) [10, Section 5]. A PRA is a PA A = 〈Q,Σ, δ, q0, F 〉 equipped with a reward363

function R : Q→ {0, 1}k for some k ∈ N.4 The rewards are summed along a run, and the364

value of a word w ∈ Σ∗, denoted R(w), is the expected reward, that is, the weighted sum of365

the rewards along all runs, weighted by their respective probabilities. We denote by A(w)366

the distribution of reward vectors in Nk, induced by the runs of A on w.367

In order to reason about Parikh images, we propose the following translation.368

I Lemma 11. Given an I/O trandsucer T , we can construct two PRAs A,B over the369

alphabet 2I and with reward function of dimension k = |I|, such that for every x ∈ (2I)+
370

and for every a ∈ Nk, we have that Pr(A(w) = a) = Pr(P(T (x)) = a), and Pr(B(w) = a) =371

Pr(P(T (π(x))) = π(a)).372

Proof. The translation is similar to the one given in the proof of Theorem 5, where instead373

of adding 2O to the alphabet, we collate the Parikh image using the rewards.374

Let T = 〈I,O, S, s0, δ, `〉, we construct A = 〈S, 2I , δ, s0, S〉 with the following reward375

function: for every s ∈ S and 1 ≤ j ≤ k, we have R(s)j = 1 if oj ∈ `(s) and R(s)j = 0376

otherwise (that is, R(s) is the characteristic vector of `(s)). Thus, A is identical to T , where377

we treat all states as accepting, and replace output labels with their characteristic vectors.378

The construction of B is similar, but accounts for the permutation π: we define B =379

〈S, 2I , µ, s0, S〉 with reward function R′, where µ(s, i) = δ(s, π(i)) for every state s ∈ S and380

i ∈ 2I , and R′(s) = π(R(s)) (where R is the reward function of A). It is easy to see that the381

construction of A and B satisfies the conditions of the lemma.382

J383

In [10], the problems of distribution-equivalence and expected-equivalence are solved,384

with complexities NC and RNC, respectively, where NC is the class of problems solvable using385

circuits of polynomial size and polylogarithmic depth, and RNC is its randomized analogue.386

It is known that NC ⊆ P and RNC ⊆ RP.387

4 The rewards in [10] also allow −1 rewards, and is set on the transitions of the PRA. Since it is trivial to
push rewards from the states to the transitions, our model is simpler.

S. Almagor 43:11

The distribution-equivalence and expected-equivalence problems, applied to the automata388

A and B obtained as per Lemma 11, exactly correspond to π-distribution symmetry and389

π-expected symmetry of T , respectively. We thus have the following.390

I Theorem 12. The problem of deciding, given an I/O transducer T and a permutation π,391

whether it is π-Parikh distribution symmetric (resp. π-Parikh expected symmetric), is in NC392

(resp. RNC).393

Both notions of Parikh symmetry can be easily shown respect composition, analogously to394

Lemma 2, in that if T is both π- and τ - Parikh distribution/expected symmetric, then it is395

also π ◦ τ -Parikh distribution/expected symmetric. Thus, we conclude this section with the396

following.397

I Theorem 13. The problem of deciding, given an I/O transducer T and a finite set of398

generators X = {π1, . . . , πm}, whether it is π-Parikh distribution symmetric (resp. π-Parikh399

expected symmetric) for every π ∈ 〈X〉, is in NC (resp. RNC).400

5 Qualitative Symmetry401

Section 4.1 rules out a decidable quantitative approximation for symmetry that takes into402

account the order of the input (at least in the sense of Theorem 8). In lieu of such an403

approximation, we turn to study a qualitative approximation, whereby we only require that404

permuting the input does not alter the support of the output distribution.405

Let T be an I/O transducer, and let π ∈ Sk. We say that T is π-qualitative-symmetric if406

for every x ∈ (2I)+ and y ∈ (2O)+ we have that Pr(T (x) = y) > 0 iff Pr(T (π(x)) = π(y)) > 0.407

Observe that for every x and y as above, Pr(T (x) = y) > 0 iff there exists a run of T408

on x that is labelled y. Thus, in order to study qualitative symmetry, we can ignore the409

concrete probabilities in T , and only keep information on whether they are positive or not.410

Therefore, we essentially consider a nondeterministic transducer.411

Using a similar translation to that in Theorem 5, but to NFAs instead of PAs, we have412

the following.413

I Lemma 14. The problem of deciding, given an I/O transducer T and a permutation π,414

whether T is π-qualitative-symmetric, is in PSPACE.415

Proof. Similarly to our approach in Theorem 5, we translate T to two automata A and416

B, where A mimics the operation of T , and B works similarly, but under the permutation417

π. Then, we check the equivalence of A and B. Instead of using PAs, however, we now418

use nondeterministic automata (NFAs). An NFA is N = 〈Q,Σ, δ, q0, F 〉 where Q is a set of419

states, Σ is an alphabet, δ : Q×Σ→ 2Q is a transition function, q0 is an initial state, and F420

are the accepting states. The semantics of NFAs are textbook standard.421

Let T = 〈I,O, S, s0, δ, `〉. We define A = 〈S, 2I∪O, η, s0, S〉 and B = 〈S, 2I∪O, ζ, s0, S〉,422

where the transition functions are defined as follows. Let q ∈ S and σ = i ∪ o with i ∈ 2I423

and o ∈ 2O, then η(q, σ) = {p ∈ S : δ(q, i)(p) > 0 and `(p) = o} and ζ(q, σ) = {p ∈ S :424

δ(q, π(i))(p) > 0 and `(p) = π(o)}.425

By construction, for every x ∈ (2I)+ and y ∈ (2O)+ we have that Pr(T (x) = y) > 0426

iff A accepts x ⊗ y, and Pr(T (π(x)) = π(y)) iff B accepts x ⊗ y. Thus, we have that T427

is π-qualitative-symmetric iff L(A) = L(B). Since equivalence of NFAs can be checked in428

PSPACE, we are done. J429

We proceed to show a matching lower bound.430

FSTTCS 2020

43:12 Process Symmetry in Probabilistic Transducers

I Lemma 15. The problem of deciding, given an I/O transducer T and a permutation π,431

whether T is π-qualitative-symmetric, is PSPACE-hard.432

Proof. We show the problem is PSPACE-hard via a reduction from the universality problem433

for NFAs over alphabet Σ = {0, 1} whose states are all accepting. That is, the problem of434

deciding, given an NFA A = 〈Q, {0, 1}, δ, q0, Q〉 (where all states are accepting), whether435

L(A) = Σ∗. This problem was shown to be PSPACE-hard in [9].436

The reduction has a similar flavour as that of Theorem 8, in that we use the permutation437

to switch between components of the transducer. The components themselves, however, are438

somewhat different.439

Let A = 〈Q, {0, 1}, δ, q0, Q〉 be an NFA over {0, 1} with all states accepting. We construct440

a transducer T = 〈I,O, S, s0, η, `〉 over I = {i1, i2} and O = {o1, o2} as follows. The states441

are S = Q∪{sinit, smid, s⊥}, with the labelling `(q) = ∅ for every q ∈ Q, `(sinit) = `(smid) = ∅,442

and `(s⊥) = {o1, o2}. For simplicity, we treat the transition function as nondeterministic443

η : S × 2I∪O → 2S . Technically, this can be thought of as specifying the support of the444

transition function, with arbitrarily chosen probabilities (e.g., uniform). Note, however, that445

we do not allow ∅ in the image of δ, since we must be able to specify probabilities for the446

transitions. Now, for every q ∈ Q and i ∈ 2I , and we define447

η(q, i) =


δ(q, 0) ∪ {s⊥} if i = ∅
δ(q, 1) ∪ {s⊥} if i = {i1, i2}
{q⊥} otherwise

448

That is, within the Q component, we identify Σ = {0, 1} with {∅, {i1, i2}}, and whenever449

there are no corresponding transitions in A, or an “invalid” letter is seen, a transition is450

taken to s⊥. Note that we add transitions to s⊥ even when there are transition in A, which451

will play a role later on. The remaining transitions are as follows (see Figure 4).452

η(sinit, {i1}) = {q0}, η(sinit, {i2}) = {smid},
η(sinit, ∅) = η(sinit, {i1, i2}) = {s⊥}, η(smid, ∅) = η(smid, {i1, i2}) = {smid, s⊥},
η(smid, {i1}) = η(smid, {i2}) = {s⊥}, and η(s⊥, σ) = {s⊥}.

sinitsmids⊥
s⊥

{o1, o2}

{i1}

{i1}, {i2}

{i2}

∅, {i1, i2}

∅, {i1, i2}
{i1}, {i2}

∅, {i1, i2}

Figure 4 The transducer constructed from an NFA.

453

Let π = (1 2). We claim that L(A) = Σ∗ iff T is (1 2)-qualitative-symmetric.454

For the first direction, we prove the contrapositive. Assume L(A) 6= Σ∗, and let w ∈455

Σ∗ \ L(A). Keeping our identification of Σ = {0, 1} with {∅, {i1, i2}}, consider the word456

x = {i1} ·w. Since there are no runs of A on w, it follows that within the Q component, after457

reading w, the only reachable state is s⊥. Thus, if z ∈ (2O)+ is such that Pr(T (x) = z) > 0,458

then z is of the form ∅+ · {o1, o2}+. In particular, let y = ∅|w|+1, then Pr(T (x) = y) = 0.459

However, a possible run of T on π(x) is sinit, s
|w|
mid, which induces the labels y = π(y). Thus,460

Pr(T (π(x)) = π(y)) > 0, so T is not π-qualitative-symmetric.461

Conversely, assume that L(A) = Σ∗, and consider x ∈ (2I)+ and y ∈ (2O)+. We claim462

S. Almagor 43:13

that Pr(T (x) = y) > 0 iff Pr(T (π(x)) = π(y)) > 0. Observe that similarly to Theorem 8, all463

the labels on T are invariant under π, so the above can be stated as464

Pr(T (x) = y) > 0 iff Pr(T (π(x)) = y) > 0. (2)465

Now, if x starts with either ∅ or {i1, i2}, then there is a single run on x and on π(x),466

namely sinit, s⊥, so both x and π(x) induce the same distribution on output sequences. Thus,467

Equation (2) holds.468

Next, similarly to Theorem 8, we can again assume without loss of generality that x469

starts with {i1}, otherwise we use π(x). Thus, x is either of the form {i1} · w or of the form470

{i1} · w · {{i1}, {i2}} · (2I)∗ with w ∈ {∅, {i1, i2}}∗.471

In the former case, recall that η follows the transition function of A, as well as allowing472

at each point to reach s⊥. Thus, T (x) assigns positive probability to every word of the form473

∅+{o1, o2}∗ (of length |w| + 1). Observe that π(w) = w, and hence π(x) = {i2}w, which474

induces a distribution with the same support, and again Equation (2) holds.475

In the latter case, x is of the form {i1} ·w · {{i1}, {i2}} · (2I)∗, where upon reading either476

{i1} or {i2}, the runs in the Q component all collapse to s⊥. Thus, the support of T (x)477

comprises words of the form ∅+{o1, o2}∗ where the ∅+ prefix is at most of length |w| + 1.478

Since π({i1}) = {i2} and π({i2}) = {i1}, then by the definition of η, the distribution T (π(x))479

has the same support (as runs that remain in smid collapse to s⊥ at the same stage). We480

thus conclude the claim. Finally, it is easy to see that the reduction is polynomial. J481

Combining Lemmas 14 and 15, we have the following.482

I Theorem 16. The problem of deciding, given an I/O transducer T and a permutation π,483

whether T is π-qualitative-symmetric, is PSPACE-complete.484

As in Section 4, since we use the permutation group S2 for our hardness result, we have485

the following.486

I Corollary 17. The problem of deciding whether a given I/O transducer T is π-qualitative-487

symmetric for every π ∈ Sk is PSPACE-complete.488

6 Extensions and Research Directions489

Extensions490

The setting considered thus far restricts to corresponding input and output sets of the form491

I = {i1, . . . , ik} and O = {o1, . . . , ok}. Typically, however, systems also include signals that492

are not process-specific, such as whether the system is ready, whether there is an error,493

etc. We can easily incorporate these into the setting. Indeed, adding input signals that are494

ignored by permutations can be inserted mutatis-mutandis to all the automata constructions495

we use. In addition, the lower bounds trivially carry over.496

In addition, some systems have multiple sets of inputs and/or output signals that belong497

to processes, such as read grants and write grants, both of which are process-specific outputs.498

Again, our framework can easily be fit with this extension, by permuting each collection of499

process-specific inputs or outputs separately.500

Research Directions501

Process symmetry often arises in model checking, and exploiting it correctly can significantly502

reduce the size of specifications (and hence the time spent in model checking), as well as503

give insight into the behaviour of the system. In this work, we introduce several variants504

of process symmetry, and study their algorithmic aspects. Specifically, we show that exact505

FSTTCS 2020

43:14 Process Symmetry in Probabilistic Transducers

symmetry can be decided in polynomial time, whereas the approximate version via the506

L∞ metric becomes undecidable. A coarser, qualitative approximation, can be decided in507

PSPACE. In addition, a different type of symmetry, which looks only at the Parikh image of508

the output, can be decided efficiently.509

The notions of symmetry studied in this work restrict to either letter-by-letter symmetry,510

or Parikh symmetry. However, many other directions can exploit the structure of words511

as temporal objects to define other symmetry measures. These include eventual symmetry,512

where we require symmetry to take place only after a finite prefix, sliding-window symmetry,513

where we look at Parikh images within a sliding window, while requiring window-by-window514

symmetry, as well as notions of symmetry that are only relevant for infinite words, such as515

the limit-average Parikh image.516

References517

1 Thomas Ball and Orna Kupferman. Vacuity in testing. In International Conference on Tests518

and Proofs, pages 4–17. Springer, 2008.519

2 Peter J Cameron et al. Permutation groups, volume 45. Cambridge University Press, 1999.520

3 Edmund M. Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha. Exploiting symmetry521

in temporal logic model checking. Formal methods in system design, 9(1-2):77–104, 1996.522

4 Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut Veith.523

Model checking. MIT press, 2018.524

5 A Donaldson and Alice Miller. Symmetry reduction for probabilistic systems. In Proc. 12th525

workshop on Automated Reasoning, pages 17–18, 2005.526

6 E Allen Emerson and A Prasad Sistla. Symmetry and model checking. Formal methods in527

system design, 9(1-2):105–131, 1996.528

7 Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decidable and529

undecidable problems. In International Colloquium on Automata, Languages, and Programming,530

pages 527–538. Springer, 2010.531

8 C Norris Ip and David L Dill. Better verification through symmetry. Formal methods in532

system design, 9(1-2):41–75, 1996.533

9 Jui-Yi Kao, Narad Rampersad, and Jeffrey Shallit. On nfas where all states are final, initial,534

or both. Theoretical Computer Science, 410(47-49):5010–5021, 2009.535

10 Stefan Kiefer and Björn Wachter. Stability and complexity of minimising probabilistic536

automata. In International Colloquium on Automata, Languages, and Programming, pages537

268–279. Springer, 2014.538

11 Marta Kwiatkowska, Gethin Norman, and David Parker. Symmetry reduction for probabilistic539

model checking. In International Conference on Computer Aided Verification, pages 234–248.540

Springer, 2006.541

12 Anthony W Lin, Truong Khanh Nguyen, Philipp Rümmer, and Jun Sun. Regular sym-542

metry patterns. In International Conference on Verification, Model Checking, and Abstract543

Interpretation, pages 455–475. Springer, 2016.544

13 Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning545

and related stochastic optimization problems. Artificial Intelligence, 147(1-2):5–34, 2003.546

14 Azaria Paz. Introduction to probabilistic automata. Academic Press, 2014.547

15 Marcel Paul Schützenberger. On the definition of a family of automata. Inf. Control.,548

4(2-3):245–270, 1961.549

16 A Prasad Sistla, Viktor Gyuris, and E Allen Emerson. Smc: a symmetry-based model checker550

for verification of safety and liveness properties. ACM Transactions on Software Engineering551

and Methodology (TOSEM), 9(2):133–166, 2000.552

17 Corinna Spermann and Michael Leuschel. Prob gets nauty: Effective symmetry reduction for553

b and z models. In 2008 2nd IFIP/IEEE International Symposium on Theoretical Aspects of554

Software Engineering, pages 15–22. IEEE, 2008.555

S. Almagor 43:15

18 Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.556

SIAM Journal on Computing, 21(2):216–227, 1992.557

19 Thomas Wahl and Alastair Donaldson. Replication and abstraction: Symmetry in automated558

formal verification. Symmetry, 2(2):799–847, 2010.559

FSTTCS 2020

	Introduction
	Preliminaries
	Symmetric Probabilistic Transducers
	Approximate Symmetry
	L Symmetry
	Parikh Symmetry

	Qualitative Symmetry
	Extensions and Research Directions

