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Abstract
In Boolean synthesis, we are given an LTL specification, and the goal is to construct a transducer that real-
izes it against an adversarial environment. Often, a specification contains both Boolean requirements that
should be satisfied against an adversarial environment, and multi-valued components that refer to the qual-
ity of the satisfaction and whose expected cost we would like to minimize with respect to a probabilistic
environment.

In this work we study, for the first time, mean-payoff games in which the system aims at minimizing the
expected cost against a probabilistic environment, while surely satisfying an ω-regular condition against an
adversarial environment. We consider the case the ω-regular condition is given as a parity objective or by
an LTL formula. We show that in general, optimal strategies need not exist, and moreover, the limit value
cannot be approximated by finite-memory strategies. We thus focus on computing the limit-value, and give
tight complexity bounds for synthesizing ε-optimal strategies for both finite-memory and infinite-memory
strategies.

We show that our game naturally arises in various contexts of synthesis with Boolean and multi-valued
objectives. Beyond direct applications, in synthesis with costs and rewards to certain behaviors, it allows
us to compute the minimal sensing cost of ω-regular specifications – a measure of quality in which we
look for a transducer that minimizes the expected number of signals that are read from the input.

1 Introduction

Synthesis is the automated construction of a system from its specification: given a linear temporal
logic (LTL) formula ψ over sets I and O of input and output signals, we synthesize a system that
realizes ψ [11, 18]. At each moment in time, the system reads a truth assignment, generated by the
environment, to the signals in I , and it generates a truth assignment to the signals in O. Thus, with
every sequence of inputs, the system associates a sequence of outputs. The system realizes ψ if all
the computations that are generated by the interaction satisfy ψ.

One weakness of automated synthesis in practice is that it pays no attention to the quality of the
synthesized system. Indeed, the classical setting is Boolean: a computation satisfies a specification or
does not satisfy it. Accordingly, while the synthesized system is correct, there is no guarantee about
its quality. This is a crucial drawback, as designers would be willing to give-up manual design only
if automated-synthesis algorithms return systems of comparable quality. In recent years, researchers
have considered extensions of the classical Boolean setting to a quantitative one, which takes quality
into account. Quality measures can refer to the system itself, examining parameters like its size or
its consumption of memory, sensors, voltage, bandwidth, etc., or refer to the way the system satisfies
the specification. In the latter, we allow the designer to specify the quality of a behavior using
quantitative specification formalisms [1, 5, 13]. For example, rather than the Boolean specification
requiring all requests to be followed by a grant, a quantitative specification formalism would give a
different satisfaction value to a computation in which requests are responded immediately and one in
which requests are responded after long delays.1

1 Note that the polarity of some quality measures is negative, as we want to minimize size, consumption, costs, etc.,
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2 Minimizing Expected Cost Under Hard Boolean Constraints

Solving the synthesis problem in the Boolean setting amounts to solving a two-player zero-sum
game between the system and the environment. The goal of the system is to satisfy the (Boolean)
specification, and the environment is adversarial. Then, a winning strategy for the system corresponds
to a transducer that realizes the specification. In the quantitative setting, the goal of the system is
no longer Boolean, as every play is assigned a cost by the specification. In the classical quantitative
approach, we measure the satisfaction value in the worst-case semantics. Thus, the value of a strategy
for the system is the maximal cost of a play induced by this strategy, and the goal of the system is to
minimize this value. Recently, there is a growing interest also in the expected cost of a play, under a
probabilistic environment. The motivation behind this approach is that the quality of satisfaction is
a “soft constraint”, and should not be measured in a worst-case semantics. Then, the game above is
replaced by a mean-payoff Markov Decision Process (MDP): a game in which each state has a cost,
inducing also costs to infinite plays (essentially, the cost of an infinite play is the limit of the average
cost of prefixes of increased lengths). The goal is to find a strategy that minimizes the expected cost
[10, 12].

While quantitative satisfaction refines the Boolean one, often a specification contains both Boolean
conditions that should be satisfied against all environments, and multi-valued components that refer
to the quality of the satisfaction and whose expectation we would like to minimize with respect to a
probabilistic environment. Accordingly, researchers have suggested the beyond worst-case approach,
where a specification has both hard and soft constraints, and the goal is to realize the hard constraints,
while maximizing the expected satisfaction value of the soft constraints. In Section 1.1 below, we
describe this approach and related work in detail.

In this work, we consider, for the first time, mean-payoff MDPs equipped with a parity winning
condition (parity-MDPs, for short). The goal is to find a strategy that surely wins the parity game
(that is, against an adversarial environment), while minimizing the expected cost of a play against a
probabilistic environment. While the starting point in earlier related work is the MDP itself, possibly
augmented by different objectives, our starting point depends on the application, and we view the
construction of the MDP as an integral part of our contribution. We focus on two applications:
synthesis with penalties to undesired scenarios and synthesis with minimal sensing.

Let us describe the two applications. We start with penalties to scenarios. Consider an LTL
specification ψ over I and O. Activating an output signal may have a cost; for example, when the
activation involves a use of a resource. Taking these costs into account, the input to the synthesis
problem includes, in addition to ψ, a cost function γ assigning cost to some assignments to output
signals. The cost of a computation is then the mean cost of assignments in it. While the specification
ψ is a hard constraint, as we only allow correct computations, minimizing the expected cost of com-
putations with respect to γ is a soft constraint. Assignments correspond to scenarios of length one.
More elaborated cost functions refer to on-going regular scenarios. Power consumption, for example,
is an important consideration in modern chip design, from portable servers to large server farms. As
the chips become more complex, the cost of powering a server farm can easily outweigh the cost of
the servers themselves, thus design teams go to great lengths in order to reduce power consumption in
their designs. The most widely researched logical power saving techniques are clock gating, in which
a clock is prevented from making a “tick” if it is redundant (c.f., [4]), and power gating, in which
whole sections of the chip are powered off when not needed and then powered on again [15, 14]. The
goal of these techniques is to reduce power consumption and the number of changes in the values of
signals, the main source of power consumption in chips. The input to the problem of synthesis with
penalties to scenarios includes, in addition to ψ, a set of deterministic automata on finite words, each

whereas the polarity of other measures is positive, as we want to maximize performance and satisfaction value. For
simplicity, we assume that all measures are associated with costs, which we want to minimize.
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describing a undesired scenario and its cost. For example, it is easy to specify the scenario of “value
flip" with a two-state deterministic automaton. We show how the setting can be easily translated into
solving our parity-MDPs, thus generating systems that realize ψ with minimal expected cost.

Our primary application considers activation of sensors. The quality measure of sensing was in-
troduced in [2, 3], as a measure for the detail with which a random input word needs to be read in
order to realize the specification. In the context of synthesis, our goal is to construct a transducer that
realizes the specification and minimizes the expected average number of sensors (of input signals)
that are used along the interaction. Thus, the hard constraint in the LTL specification, and the soft
one is the expected number of active sensors. Giving up sensing has a flavor of synthesis with incom-
plete information [16]: the transducer has to realize the specification no matter what the incomplete
information is. Thus, as opposed to the examples above, the modeling of cost involves a careful con-
struction of the MDP to be analyzed, and also involves an exponential blow-up, which we show to be
unavoidable. In [3], the problem was solved for safety specifications. Our solution to the parity-MDP
problem enables a solution for full LTL. We also study the complexity of the problem when the input
is an LTL formula, rather than a deterministic automaton.

Back to parity-MDPs, we show that in general, optimal strategies need not exist. That is, there
are parity-MDPs in which an infinite-state strategy can get arbitrarily close to some limit optimal
value, but cannot attain it. Moreover, the limit value cannot be approximated by finite-memory
strategies. Accordingly, our solution to parity-MDPs suggests two algorithms. The first, described
in Section 3.1, finds the limit value of all possible strategies, which corresponds to infinite-state
transducers. The second, described in Section 3.2, computes the limit value over all finite-memory
strategies. The complexity of both algorithms is NP∩coNP. Moreover, they are computable in poly-
nomial time when an oracle to a two-player parity game is given. Hence, our complexity upper
bounds match the trivial lower bounds that arise from the fact that every solution to a parity-MDP is
also a solution to a parity game. For our applications, we show that the complexity of the synthesis
problem for LTL specifications stays doubly-exponential, as in the Boolean setting, even when we
minimize penalties to undesired scenarios or minimize sensing.

1.1 Related Work

The combination of worst-case synthesis with expected-cost synthesis, dubbed beyond worst-case
synthesis, was studied in [6, 12] for models that are closely related to ours. In [6] the authors study
mean-payoff MDPs, where both the hard constraints and the soft constraints are quantitative. Thus, a
system needs to ensure a strict upper bound on the mean-payoff cost, while minimizing the expected
cost. In [12], multidimensional mean-payoff MDPs are considered. Thus, the MDP is equipped with
several mean-payoff costs, and the goal is to find a system that ensures the mean-payoff in some of
the mean-payoffs is below an upper bound, while minimizing the expected mean-payoffs (or rather,
approximating their Pareto-curve).

In comparison, our work is the first to consider a hard Boolean constraint (namely the parity con-
dition). This poses both a conceptual and a technical difference. Conceptually, when quantitative
synthesis is taken as a refinement of Boolean synthesis, it is typically meant as a ranking of differ-
ent systems that satisfy a Boolean specification. Thus, it makes sense for the hard constraint to be
Boolean as well. Technically, combining Boolean and quantitative constraints gives rise to some sub-
tleties that do not exist in the pure-quantitative setting. Specifically, when both the hard and the soft
constraints are quantitative, a strategy can intuitively “alternate” between satisfying them. Thus, if
while trying to meet the soft constraint the hard constraint is violated, we can switch to a worst-case
strategy until the hard constraint is satisfied, and go back to trying to minimize the soft constraint.
This alternation can be done infinitely often. In the Boolean setting, however, this alternation can
violate the Boolean constraint. We note that unlike classical parity games, where the parity winning
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4 Minimizing Expected Cost Under Hard Boolean Constraints

condition can be translated to a richer mean-payoff objective, the parity winning condition in our
parity-MDPs does not admit a similar translation.

Other works on MDPs and mean-payoff objectives tackle different aspects of quantitative ana-
lysis. In [19], a solution to the expected mean-payoff value over MDPs is presented. In [7] and [8],
the authors study a combination of mean-payoff and parity objectives over MDPs and over stochastic
two-player games. There, the goal of the system is to ensure with probability 1 that the parity con-
dition holds and that the mean-payoff is below a threshold. This differs from our work in that the
parity condition is not a hard constraint, as it is met only almost-surely, and in that the expected
mean-payoff is not guaranteed to be minimized. As detailed in the paper, these differences make the
technical challenges very different.

Due to lack of space, some proofs appear in the appendix.

2 Parity-MDPs

A parity Markov decision process (Parity-MDP, for short) combines a parity game with a mean-
payoff MDP. The game is played between Player 1, who models a system, and Player 2, who models
the environment. The environment is adversarial with respect to the parity winning condition and
is stochastic with respect to the mean-payoff objective. Formally, a parity-MDP is a tuple M =
〈S1, S2, s0, A1, A2, δ1, δ2,P, cost, α〉, with the following components. The sets S1 and S2 are finite
set of states, for Players 1 and 2, respectively. Let S = S1 ∪ S2. Then, s0 ∈ S is an initial state,
and A1 and A2 are sets of actions for the players. Not all actions are available in all states: for every
state s ∈ Si, for i ∈ {1, 2}, we use Ai(s) to denote the finite set of actions available to Player i
in the state s. For i ∈ {1, 2}, the transition function δi : Si × Ai 9 S is such that δi(s, a) is
defined iff a ∈ Ai(s). Let δ = δ1 ∪ δ2. Note that δ2 gets an action of Player 2 as a parameter. We
distinguish between two approaches to the way the action is chosen. In the adversarial approach, it
is Player 2 who chooses the action. In the stochastic approach, the choice depends on the (partial)
function P : S2 × A2 9 [0, 1], where for every state s ∈ S2 and a ∈ A2, we have that P(s, a) > 0
only if a ∈ A2(s). Also,

∑
a∈A2(s) P(s, a) = 1. Finally, cost : S → N is a cost function, and

α : S → {0, ..., d}, for some d ∈ N, is a parity winning condition.
The parity-MDP M induces a parity game MP = 〈S1, S2, s0, A1, A2, δ1, δ2, α〉, obtained by

omitting P and cost. In this game, we follow the adversarial approach to the environment. Thus,
both players choose their actions. Formally, a strategy for Player i inM, for i ∈ {1, 2} is a function
fi : S∗ × Si → Ai such that for s0, . . . , sn, we have f(s0, . . . , sn) ∈ Ai(sn). Thus, a strategy
suggests to Player i an available action given the history of the states traversed so far. Note that we
do not consider randomized strategies, but rather deterministic ones. Our results in Section 3 show
that this is sufficient, in the sense that the players cannot gain by using randomization.

Given strategies f1 and f2 for Players 1 and 2, the play induced f1 and f2 is is the infinite
sequence of states s0, s1, ... such that for every j ≥ 0, if sj ∈ Si, for i ∈ {1, 2}, then sj+1 =
δi(sj , f(s0, ..., sj)). For an infinite play r, we denote by inf(r) the set of states that r visits infinitely
often. The play r = s0, s1, ... ofM is parity winning if max {α(s) : s ∈ inf(r)} is even.

The parity-MDPM also induces an MDPMMDP = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost〉, obtained
by omitting α. In this game, we follow the stochastic approach to the environment and consider the
distribution of plays when only a strategy for Player 1 is given. Formally, we first extend P to trans-
itions as follows: For states s ∈ S2 and s′ ∈ S, we define P(s, s′) =

∑
a∈A(s):δ2(s,a)=s′ P(s, a).

Then, a play ofM with strategy f1 for Player 1 is an infinite sequence of states s0, s1, ... such that
for every j ≥ 0, if sj ∈ S1, then sj+1 = δ1(sj , f1(s0, ..., sj)), and if sj ∈ S2, then P(sj , sj+1) > 0.
The cost of a strategy f1 is the expected average cost of a random walk in M in which Player 1
proceeds according to f1. Formally, for m ∈ N and for a prefix τ = s0, s1, ...sm of a play, let
I2 = {j : j < m and sj ∈ S2}. Then, we define Pf (τ) =

∏
j∈I P(sj , sj+1) and costm(f, τ) =
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1
m+1

∑m
j=0 cost(sj). The cost of a strategy f1 is then cost(f1) = lim infm→∞

∑
τ :|τ |=m costm(f1, τ)·

Pf (τ). We denote by inf(f) the random variable that associates inf(ρ) with a sequence of states
ρ = s0, s1, ..., under the probability space induced byM with f .

A finite memory strategy forM is described by a finite set M called memory, an initial memory
init ∈M , a memory update function next : S1×M →M , and an action function act : S1×M →
A1 such that act(s,m) ∈ A1(s) for every s ∈ S1 and m ∈M .

A strategy is memoryless if it has finite memory M with |M | = 1. Note that a memoryless
strategy depends only on the current state. Thus, we can describe a memoryless strategy by f1 :
S1 → A1. Let cost(M) = inf{cost(f1) : f1 is a strategy forM}. That is, cost(M) is the expected
cost of a game played onM in which Player 1 uses an optimal strategy.

The following is a basic property of MDPs.
I Theorem 1. Consider an MDPM. Then, cost(M) can be attained by a memoryless strategy,
which can be computed in polynomial time.

Recall that a strategy f1 for player 1 is winning in MP if every play ofM with f1 satisfies the
parity condition α. Note that we require sure winning, in the sense that all plays must be winning,
rather than winning with probability 1 (almost-sure winning). On the other hand, the definition of
cost in MMDP considered strategies for Player 1 and ignore the parity winning condition. We now
define the sure cost of the parity-MDP, which does take them into account. For a strategy f1 for
Player 1, the sure cost of f1, denoted costsure(f1), is cost(f1), if f1 is winning, and is∞ otherwise.
The sure cost ofM is then costsure(M) = inf {costsure(f1) : f1 is a strategy forM}.

End Components Consider a parity-MDP M = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost, α〉. An end
component (EC, for short) is a set U ⊆ S such that for every state s ∈ U , the following hold.
1. If s ∈ S1, then there exists an action a ∈ As such that δ1(s, a) ∈ U .
2. If s ∈ S2, then for every a ∈ A2(s) such that P(s, a) > 0, it holds that δ2(s, a) ∈ U .
3. For every t, t′ ∈ U , there exist a path t = t0, t1, ..., tk = t′ and actions a1, ..., at such that for

every 0 ≤ i < t, it holds that ti ∈ U , and there exists an action a such that δ(ti, a) = ti+1.
Intuitively, the probabilistic player cannot force to leave U , and Player 1 has positive probability of
reaching every state in U from every other state.

For an EC U and a state s ∈ U , we can consider the parity-MDPM|sU , in which the states are
U , the initial state is s, and all the components are naturally restricted to U . Since U is an EC, then
this is indeed a parity-MDP. An EC U is maximal if for every nonempty U ′ ⊆ S \ U , we have that
U ∪ U ′ is not an EC.

3 Solving Parity MDPs

In this section we study the problem of finding the sure cost for an MDP. Recall that for MDPs, there
always exists an optimal memoryless strategy. We start by demonstrating that for the sure cost of
parity-MDPs, the situation is much more complicated.

I Theorem 2. There is a parity-MDP M in which Player 1 does not have an optimal strategy
(in particular, not a memoryless one) for attaining the sure cost ofM. Moreover, for every ε > 0,
Player 1 may need infinite memory in order to ε-approximate costsure(M).

Proof. Consider the parity-MDPM appearing in Figure 1. Player 1 can decrease the cost of a play
towards 1 by staying in the initial state. However, in order to ensure an even parity rank, Player 1
must either play b and reach a states with parity rank 2 and cost 10 w.p. 0.5, or play c but incur cost
10. A finite memory strategy for Player 1 must eventually play c from the initial state in every play,2

2 Note that this also implies that randomized strategies could not be of help here.
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6 Minimizing Expected Cost Under Hard Boolean Constraints

thus the cost of every winning finite-memory strategy is 10. On the other hand, for every ε > 0, there
exists an infinite memory strategy f that gets cost at most 1 + ε. Essentially (see Lemma 4 for a
formal proof of the general case), the strategy f plays b for a long time. If the state with parity rank
2 is reached, it plays b for even longer, and otherwise plays c.

1, 12, 10 1, 10 2, 10

aa

c 0.5

1

b

0.5

Figure 1 The Parity MDP M. States of Player 1 are circles, these of Player 2 are squares, with outgoing
edges marked by their probability. Each state is labeled by its parity rank (left) and cost (right). Player 1 has no
optimal strategy and needs infinite memory for an ε approximation.

Finally, there is no optimal strategy for Player 1, as every strategy that plays c from the initial
state eventually (i.e., as a response to some strategy of Player 2) gets cost 10 with some positive
probability. However, a strategy that never plays c is not parity-winning. J

Following Theorem 2, our solution to parity MDPs suggests two algorithms. The first, described
in Section 3.1, finds the limit value of all possible strategies, which corresponds to infinite-state
transducers. The second, described in Section 3.2, computes the limit value over all finite-memory
strategies. The complexity of both algorithms is NP∩coNP. Moreover, they are computable in poly-
nomial time when an oracle to a two-player parity game is given. Hence, our complexity upper
bounds match the trivial lower bounds that arise from the fact that every solution to a parity-MDP is
also a solution to a parity game.

3.1 Infinite-Memory Strategies

In this section we study the problem of finding the sure cost of a parity-MDP when infinite-memory
strategies are allowed. We prove the upper bound in the following theorem. As stated above, the
lower bound is trivial.

I Theorem 3. Consider a parity-MDP M. Then, costsure(M) can be computed in NP∩co-NP,
and is parity-games hard.

Consider a parity-MDPM = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost, α〉. We first remove fromM all
states that are not sure-winning for Player 1 inMP. Clearly, every strategy that attains costsure(M)
cannot visit a state that is losing inMP. Thus, we henceforth assume that all states inM are winning
for Player 1 inMP. We say that an EC C ofM is good (GEC, for short) if its maximal rank is even.
That is, maxs∈C {α(s)} is even.

The idea behind our algorithm is as follows. W.p. 1, each play inM eventually reaches and visits
infinitely often all states of some EC. Hence, when restricting attention to plays that are winning for
Player 1 inMP, it must be the case that this EC is good. It follows that the sure cost ofM is affected
only by the properties of its GECs. Moreover, since the minimal expected mean-payoff value is the
same in all the states of an EC, we can consider only maximal GECs and refer to the value of an EC,
namely the minimal expected value that Player 1 can ensure while staying in the EC. Our algorithm
constructs a new MDP (without ranks)M′ in which the cost of a state is the value of the maximal
GEC it belongs to. If a state does not belong to a GEC, then we assign it a very high cost in M′,
where the intuition is that Player 1 cannot benefit from visiting this state infinitely often. We claim
that the sure cost in the parity-MDPM coincides with the cost of the MDPM′.
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Formally, for an EC C, let Cmax be the set of the states of C with the maximal parity rank in C.
By definition, this rank is even when C is a GEC. Note that if C and C ′ are GECs and C ∩ C ′ 6= ∅,
then C ∪ C ′ is also a GEC. Thus, we can restrict attention to maximal GEC. For a GEC C, there
exists a memoryless strategy fC that maximizes the probability of reaching Cmax from every state
s ∈ C while staying in C. Moreover, since C is an EC, the probability of reaching Cmax by playing
fC is strictly positive from every state s ∈ C. Let t be a state in C. Consider the MDP MMDP|tC .
Since C is EC, we have that cost(MMDP|tC) is independent of the initial state t. Thus, we can define
cost(MMDP|C) as cost(MMDP|tC) for some t ∈ C.

Recall that our algorithm starts by a preprocessing step that removes all states that are not sure-
winning for Player 1 inMP. It then finds the maximal GECs ofM (using a polynomial-time pro-
cedure that we describe in Appendix A.1), and obtain an MDPM′ by assigning every state within a
GEC C the cost cost(MMDP|C), and assigning every state that is not inside a GEC cost W + 1, where
W is the maximal cost that appears inM. We claim that costsure(M) = cost(M′).

Before proving the claim, note that all the steps of the algorithm except for the preprocessing step
that involves a solution of parity game require polynomial time. In particular, the strategies fC above
are computable in polynomial time by solving a reachability MDP, and, by Theorem 1, so does the
final step of finding cost(M ′).

Proving that costsure(M) = cost(M′) involves the following steps (see Appendix A for the full
proof). First, proving costsure(M) ≥ cost(M′) is not hard, as a play with a winning strategy f for
Player 1 inM reaches and stays in some GEC C w.p. 1, and within C, the best expected cost one
can hope for is cost(MMDP|C), which is exactly what the strategy f attains when played inM′.

Next, proving costsure(M) ≤ cost(M′), we show how an optimal strategy f ′ inM′ induces an
ε-optimal strategy f inM. We start with Lemma 4, which justifies the costs within a GEC.

I Lemma 4. Consider a GEC C inM, and s ∈ C. Let v(s) = cost(MMDP|sC), then for every ε > 0
there exists a strategy f ofMs with costsure(f) ≤ v(s) + ε.

Intuitively, in a good EC, f minimizes the expected mean-payoff and once in a while it plays
reachability, aiming to visit to a state with the maximal rank in the EC. Since the EC is good, this
rank is even. If reachability is not obtained after N rounds, for a parameter N , then f gives up
and aims at only surely satisfying the parity objective (our preprocessing step ensures that this is
possible). Otherwise, after reaching the maximal rank, f switches again to minimizing mean-payoff.
This process is repeated forever, increasing N in each iteration. Hence, the probability that Player 1
eventually gives up can be bounded from above by an arbitrarily small ε > 0. Accordingly, Player 1
can achieve a value that is arbitrarily close to cost(MMDP|C).

Finally, we construct the ε-optimal strategy f inM as follows. The strategy f first mimics f ′ for
a large number of steps k, or until an EC (in which f ′ stays forever) is reached. If a good EC is not
reached, then f aims at only surely satisfying the parity objective. If a good EC is reached, then f
behaves as prescribed above, per Lemma 4. Since the probability of f ′ reaching a good EC within k
steps tends to 1, then Player 1 can achieve a value within ε of cost(M′).

3.2 Finite-Memory Strategies

In this section we study the problem of finding the sure cost of a parity-MDP, when restricted to
finite memory strategies. For a parity-MDPM, we define costsure,<∞(M) = inf{costsure(f) : f
is a finite memory strategy forM}. We prove the upper bound in the following theorem. As stated
above, the lower bound is trivial.

I Theorem 5. Consider a parity-MDPM. Then, costsure,<∞(M) can be computed in NP∩co-NP,
and is parity-games hard.
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8 Minimizing Expected Cost Under Hard Boolean Constraints

The general approach is similar to the one we took in Section 3.1. That is, we remove fromM
all states that are not sure-winning for Player 1 in MP, and proceed by reasoning about a certain
type of ECs. However, for finite-memory strategies, we need a more restricted class of ECs than the
GECs that were used in Section 3.1. Indeed, a finite-memory strategy might not suffice to win the
sure-parity condition in a GEC.

For a GEC C, let k be the maximal odd priority in C, with k = −1 if there are no odd priorities.
We define C

max
even = {q ∈ C : α(q) > k and α(q) is even}. We say that a GEC C inM is super good

(SGEC, for short) if from every state s ∈ C, there exists a finite-memory strategy f forM|sC such
that the play of M under f reaches C

max
even w.p. 1, and if the play does not reach C

max
even, then it is

parity winning. We refer to f as a witness to C being a SGEC. If C is not a SGEC, we refer to the
states of C that satisfy the above as super-good states.

We argue that SGECs are the proper notion for reasoning about finite-memory strategies. Spe-
cifically, we show that in a SGEC, Player 1 can achieve ε-optimal expected cost with a finite-memory
strategy, and that every finite-memory winning strategy reaches a SGEC w.p. 1.

Our algorithm finds the maximal SGECs ofM and obtain an MDPM′ in the same manner we
did in Section 3.1, namely by assigning high weights to states not in SGECs, and the optimal mean-
payoff MDP value to states in SGECs. As there, we claim that cost(M′) = costsure,<∞(M). The
analysis of the algorithm as well as its concrete details, are, however, more intricate.

We start by proving that the notion of maximal SGECs is well defined. To this end, we present the
following lemma, whose proof appears in Appendix B.1. Note that in the case of GECs, the lemma
was trivial.

I Lemma 6. Consider SGEC C and D, such that C ∩D 6= ∅, then C ∪D is also a SGEC.

Intuitively, we prove this by considering witnesses f, g for C and D being SGECs. We then modify
f such that from every state in C, it tries to reach D for N steps, for some parameter N . Once D
is reached, g takes over. If D is not reached, f attempts to reach C

max
even. Thus, w.p. 1, the strategy

reaches D
max
even, and if it does not, it either reaches C

max
even infinitely often, or wins the parity condition.

Next, we note that unlike the syntactic definition of GECs, the definition of SGECs is semantic, as
it involves a strategy. Thus, finding the maximal SGECs adds another complication to the algorithm.
In fact, it is not hard to see that even checking whether an EC is a SGEC is parity-games hard. Using
techniques from [7], we show in Appendix B.2 that we can reduce the latter to the problem of solving
a parity-Büchi game. We thus have the following lemma.

I Lemma 7. Consider an EC C in a parity-MDP M. We can decide whether C is a SGEC in
NP∩ co-NP, as well as compute a witness strategy and, if C is not a SGEC, find the set of super-good
states.

Next, we show how to find the maximal SGECs of M. Essentially, for every odd rank k, we
can find the SGECs whose maximal odd rank is k by removing all states with higher odd ranks,
and recursively refining ECs by keeping only super-good states, using Lemma 7. Thus, we have the
following (see Appendix B.3 for complete details).

I Theorem 8. Consider a parity-MDPM. We can find the maximal SGECs ofM in NP∩co-NP.

Theorem 8 shows that our algorithm for computing costsure,<∞(M) solves the problem in
NP∩co-NP. It remains to prove its correctness. First, Lemma 9 justifies the assignment of costs
within a SGEC.

I Lemma 9. Consider a SGEC C inM and a state s in C. Let v(s) = cost(MMDP|sC). Then, for
every ε > 0, there exists a finite-memory strategy f ofM|sC with costsure(f) ≤ v(s) + ε.

Proof. Let g be a memoryless strategy such that cost(g) = cost(MMDP|sC). By Theorem 1 such a
strategy exists. Let h be a finite-memory strategy that witnesses C being a SGEC. For every k ∈ N,
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consider the strategy fk that repeatedly plays g for k steps and then plays h until C
max
even is reached.

Since g and h are finite-memory, then fk is finite memory. In addition, observe that h reaches C
max
even

w.p. 1, and ifC
max
even is not reached, then h is parity-winning. Thus fk is parity-winning, and it reaches

Step 1 infinitely often w.p. 1. Moreover, since h has finite memory, then for every n ∈ N, there is
a bounded probability 0 < p(n) ≤ 1 that f reaches C

max
even within n steps, with limn→∞ p(n) = 1.

Thus, we get that limk→∞ scost(fk) = scost(g) = cost(MMDP|sC), which concludes the proof. J
Lemma 9 implies that we can approximate the optimal value of SGECs with finite-memory

strategies. It remains to show that it is indeed enough to consider SGECs. Consider a finite-memory
strategy f . Then, w.p. 1, f reaches an EC. Let C be an EC with PrM(inf(f) = C) > 0. The
following lemma characterizes an assumption we can make on the behavior of f in such an EC.
I Lemma 10. Consider a parity-MDP M and an EC C. For every finite-memory strategy f , if
PrM(inf(f) = C) > 0, then there exists a finite-memory strategy g such that for every s ∈ C, we
have that PrMs(inf(g) = C) = 1 and every play of g from s stays in C. Moreover, if f is parity
winning, then so is g.

Intuitively, we show that there exists some finite history h such that the strategy fh, which is f
played after seeing the history h, has the following property: fh reaches and stays in C, and w.p. 1
visits infinitely often all the states in C, and in particular C

max
even. For the proof, we consider the set

F = {fh : h is a finite history}. Since f has finite memory, it follows that this set is finite. Using
this, we show that if PrM(inf(g) = C) < 1 for every g ∈ F , then PrM(inf(f) = C) = 0, which is a
contradiction. Finally, since f is also parity winning, it follows that fh above is also parity-winning,
and is thus a witness for C being a SGEC. The full proof appears in Appendix B.4.

Finally, by Lemma 11, we can assume that once f reaches an EC C, it stays in C and visits all its
states infinitely often w.p. 1. Since f is parity-winning, it follows that C has a maximal even rank,
and that f reaches C

max
even w.p. 1. Moreover, in every play that does not reach C

max
even, f wins the parity

condition. We can thus conclude with the following Lemma, which completes the correctness proof
of our algorithm for computing costsure,<∞(M). See Appendix B.5 for the proof.
I Lemma 11. Consider a parity-MDPM and an EC C. For every finite-memory strategy f , if f
is parity winning and PrM(inf(f) = C) > 0, then C is a SGEC.
3.3 Comparison with Related Work

Both our work and [6, 12] analyze ECs and reduce the problem to reasoning about an MDP that
ignores the hard constraints. The main difference with [6] is that there, the hard and soft constraints
have the same objective (i.e., worst-case mean-payoff value and expected-case mean-payoff value).
In [6], the strategy played for N rounds to satisfy the soft objective and then at most M rounds to
satisfy the hard objective, for some constants N and M . In our setting, we cannot bound M , and
in fact it might be the case that Player 1 would play to satisfy the parity objective for the rest of the
game (i.e., forever) even after reaching a super-good end component.

The difference with [12] is twofold. First, technically, the type of hard constraints in [12] is
worst-case mean-payoff, whereas our setting uses the Boolean parity condition. In classical parity
games, the parity condition can be reduced to a mean-payoff objective. Similar reductions, however,
do not work in order to reduce our setting to the setting of [12]. Thus, our contribution is orthogonal
to [12]. Secondly, Boolean constraints are conceptually different than quantitative constraints, and as
we demonstrate in Section 4, they arise naturally in quantitative extensions of Boolean paradigms.

We note that [12] also study a relaxation in which almost-sure winning is allowed for the hard
constraints. An analogue in our setting is to consider an almost-sure parity condition. We note that
in such a setting, GECs are sufficient for reasoning both about finite-memory and infinite-memory
strategies. Moreover, the preprocessing involves solving an almost-sure parity MDP (without mean-
payoff constraints), which can be done in polynomial time. Thus, as is the case in [12], we can
compute the cost of an MDP with almost-sure hard constraints in polynomial time.

CONCUR16



10 Minimizing Expected Cost Under Hard Boolean Constraints

4 Applications

In this section we study two applications of parity-MDPs. Both extend the Boolean synthesis prob-
lem. Due to lack of space, our description is only an overview. Full definitions and details can be
found in Appendix C. We start with some basic definitions.

For finite sets I and O of input and output signals, respectively, an I/O transducer is T =
〈I,O,Q, q0, δ, ρ〉, where Q is a set of states, q0 ∈ Q is an initial state, δ : Q × 2I → Q is a total
(deterministic) transition function, and ρ : Q → 2O is a labeling function on the states. The run of
T on a word w = i0 · i1 · · · ∈ (2I)ω is the sequence of states q0, q1, . . . such that qk+1 = δ(qk, ik)
for all k ≥ 0. The output of T on w is then o1, o2, . . . ∈ (2O)ω where ok = ρ(qk) for all k ≥ 1.
Note that the first output assignment is that of q1, and we do not consider ρ(q0). This reflects the
fact that the environment initiates the interaction. The computation of T on w is then T (w) =
i0 ∪ o1, i1 ∪ o2, . . . ∈ (2I∪O)ω . When Q is a finite set, we say that the transducer is finite.

The synthesis problem gets as input a specification L ⊆ (2I∪O)ω and generates a transducer T
that realizes L; namely, all the computations of T are in L. The language L is typically given by an
LTL formula [17] or by means of an automaton of infinite words.

4.1 Penalties on Undesired Scenarios

Recall that in the Boolean synthesis problem, the goal is to generate a transducer that associates with
each infinite sequence of inputs an infinite sequence of outputs so that the result computation satisfies
a given specification. Typically, some behaviors generated by the transducers may be less desired
than others. For example, as discussed in Section 1, designs that use fewer resources or minimize
expensive activities are preferable. The input to the synthesis with penalties problem includes, in
addition to the Boolean specification, languages of finite words that describe undesired behaviors,
and their costs. The goal is to generate a transducer that realizes the specification and minimizes cost
due to undesired behaviors.

Formally, the input to the problem includes languages L1, . . . , Lm of finite words over the alpha-
bet 2I∪O and a penalty function γ : {1, . . . ,m} → N specifying for each 1 ≤ i ≤ m the penalty that
should be applied for generating a behavior in Li. As described in Section 1, the language Li may be
local (that is, include only words of length 1) and thus refer only to activation of output signals, may
specify short scenarios like flips of output signals, and may also specify rich regular scenarios. Note
that we allow penalties also for behaviors that depend on the input signals. Intuitively, whenever a
computation π includes a behavior in Li, a penalty of γ(i) is applied. Formally, if π = σ1, σ2, . . .,
then for every position j ≥ 1, we define penalty(j) = {i : there is k ≤ i such that σk ·σk+1 · · ·σj ∈
Li}. That is, penalty(j) points to the subset of languages Li such that a word in Li ends in position j.
Then, the cost of position j, denoted cost(j), is

∑
i∈penalty(j) γ(i). Finally, for a finite computation

π = σ1, σ2, . . ., we define its cost, denoted cost(π), as lim supm→∞ 1
m

∑m
j=1 cost(j).

Let A be a deterministic parity automaton (DPW, for short) over the alphabet 2I∪O that specifies
the specification ψ. We describe a parity-MDP whose solution is a transducer that realizes A with
the minimal cost for penalties. The idea is simple: on top of the parity game G described above, we
compose monitors that detect undesired scenarios. We assume that the languages L1, . . . , Lm and
are given by means of deterministic automata on finite words (DFWs) U1, . . . ,Um where for every
1 ≤ i ≤ m, we have that L(Ui) = (2I∪O)∗ · Li. That is, Ui accepts σ1 · · ·σn iff there exists k ≤ n

such that σk · · ·σn ∈ Li. Essentially, we turn A into a parity-MDP by composing it with the DFWs
U1, . . . ,Um. Then, Ui reaching an accepting state indicates that the penalty for Li should be applied,
which induces the costs in the parity-MDP. The probabilities in the parity-MDP are induced form the
distribution of the assignments to input signals. The full construction can be found in Appendix C.2.
We note that an alternative definition can replace the DFWs U1, . . . ,Um and the cost function γ by a
single weighted automaton that can be composed with A.
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4.2 Sensing

Consider a transducer T = 〈I,O,Q, q0, δ, ρ〉. For a state q ∈ Q and a signal p ∈ I , we say that p is
sensed in q if there exists a set S ⊆ I such that δ(q, S \ {p}) 6= δ(q, S ∪ {p}). Intuitively, a signal is
sensed in q if knowing its value may affect the destination of at least one transition from q. We use
sensed(q) to denote the set of signals sensed in q. The sensing cost of a state q ∈ Q is scost(q) =
|sensed(q)|. For a finite run r = q1, . . . , qm of T , we define the sensing cost of r, denoted scost(r),
as 1

m

∑m−1
i=0 scost(qi). That is, scost(r) is the average number of sensors that T uses during r. For

a finite input sequence w ∈ (2I)∗, we define the sensing cost of w in T , denoted scostT (w), as the
sensing cost of the run of T on w. Finally, the sensing cost of T is the expected sensing cost of input
sequences of length that tends to infinity, which is parameterized by a distribution on (2I)ω given by
a sequence of distributions D1, D2, ... such that Dt : 2I → [0, 1] describes the distribution over 2I at
time t ∈ N. For simplicity, we assume that the distribution is uniform. Thus, Dt(i) = 2−|I| for every
t ∈ N. For the uniform distribution we have scost(T ) = limm→∞ |(2I)|−m

∑
w∈(2I)m scostT (w).

Note that this definition also applies when the transducer is infinite. However, for infinite trans-
ducers, the limit in the definition of scost(T ) might not exist, and we therefore define scost(T ) =
lim supm→∞ |2I |−m

∑
w∈(2I)m scostT (w). Finally, for a realizable specification L ∈ 2I∪O, we

define scostI/O(L) = inf{scost(T ) : T is an I/O transducer that realizes L}.
In [3], we study the sensing cost of safety properties. We show that there, a finite, minimally-

sensing transducer, always exists (albeit of exponential size), and the problem of computing the
sensing cost is EXPTIME-complete. In our current setting, however, a minimally-sensing transducer
need not exist, and any approximation may require infinite memory. We demonstrate this with an
example.

I Example 12. Let I = {a} andO = {b}, and consider the specification ψ = (GFa∧Gb)∨G(¬b→
XG(a ↔ b)). Thus, ψ states that either a holds infinitely often and b always holds, or, if b does not
holds at a certain time, then henceforth, a holds iff b holds. Observe that once the system outputs ¬b,
it has to always sense a in order to determine the output. The system thus has an incentive to always
output b. This, however, may render ψ false, as a need not hold infinitely often.

We start by claiming that every finite-memory transducer T that realizes ψ has sensing cost 1.
Indeed, let n be the number of states in T . A random input sequence contains the infix (¬a)n+1

w.p. 1. Upon reading such an infix, T has to output ¬b, as otherwise it would not realize ψ on a
computation with suffix (¬a)ω . Thus, from then on, T senses a in every state. So scost(T ) = 1.

However, by using infinite-memory transducers, we can follow the construction in Section 3.1 and
reduce the sensing cost arbitrarily close to 0. Let M ∈ N. We construct a transducer T ′ as follows.
After initializing i to 1, the transducer T ′ senses a and outputs b for iM steps. If a does not hold
during this time, then T ′ outputs ¬b and starts sensing a and outputting b accordingly. Otherwise, if a
holds during this time, then T ′ stops sensing a for 2i steps, while outputting b. It then increases i by
1 and repeats the process. Note that T ′ outputs ¬b iff a does not hold for iM consecutive positions
at the i-th round (which happens w.p. 2−iM ). Thus, the probability of T ′ outputting ¬b in a random
computation is bounded from above by

∑∞
i=1 2−iM = 2−M , which tends to 0 as M tends to ∞.

Note that in the i-th round, T ′ senses a for only iM steps, and then does not sense anything for 2iM
steps, so if T ′ does not output ¬b, the sensing cost is 0. Thus, we have limM→∞ scost(T ′) = 0. J

We proceed by describing the general solution to computing the sensing cost of a specification.
Recall that synthesis of a DPW A is reduced to solving a parity game. When sensing is introduced,
it is not enough for the system to win this game, as it now has to win while minimizing the sensing
cost. Intuitively, not sensing some inputs introduces incomplete information to the game: once the
system gives up sensing, it may not know the state in which the game is and knows instead only a set
of states in which the game may be. In particular, unlike usual realizability, a strategy that minimizes
the sensing need not use the state space of the DPW.

CONCUR16



12 Minimizing Expected Cost Under Hard Boolean Constraints

I Theorem 13. Consider a DPW specification A over 2I∪O. There exists a parity-MDPM such
that costsure(M) = scostI/O(L(A)). Moreover, the number of states ofM is singly exponential in
that of A, and the number of parity ranks onM is polynomial in that of A.

Proof. Conceptually, we follow the ideas of Boolean synthesis, by thinking of A as a parity game
between the system and the environment, as described in Section C.1. The proof is comprised of
several steps. First, intuitively, we give the system an option to sense only some input signals x ⊆ I ,
but require that then, the play must be winning for every assignment of the inputs that are not sensed.
Then, we introduce costs induced by the number of sensed input signals in each state, and finally we
add a uniform stochastic environment. Technically, however, the first step is done using automata,
rather than games, and converts the DPWA into a universal parity automaton (UPW) – an automaton
in which a the transition function maps each state and letter to more than a single successor state, and
a word is accepted if all the runs on it are accepting. We use the universal branches of the UPW
in order to model the several possible assignments to the input signals that are not sensed. Thus, in
state s of A, the system chooses a state 〈s, x〉, where x ⊆ I represents the inputs to be sensed. The
environment then chooses an assignment i : I → {0, 1} for the inputs, and the system chooses an
output assignment o : O → {0, 1}. However, instead of the new state being δ(s, i ∪ o), a universal
transition is taken to every state s′ such that s′ = δ(s, i′ ∪ o) for some i′ that agrees with i on every
input in x. Thus, effectively, the system has to play only according to the values of the sensed inputs.
Note that the two players are not modeled in the automaton. Rather, their choices are represented by
augmenting the alphabet to include a 2I component to represent the sensed inputs. Using automata
allows us to determinize the UPW back to a DPW that already captures sensing. We then convert the
automaton to a parity-game, and proceed as described above.

For the formal details, see Appendix C.3. J

I Theorem 14. Consider a DPW specification A over 2I∪O. We can compute scostI/O(L(A))
in singly-exponential time. Moreover, the problem of deciding whether scostI/O(L(A)) > 0 is
EXPTIME-complete.

Proof. We obtain from A a parity-MDPM as per Theorem 13. Observe that the algorithm in the
proof of Theorem 3 essentially runs in polynomial time, apart from solving a parity game, which is
done in NP∩co-NP. However, deterministic algorithms for solving parity games run in time polyno-
mial in the number of states, and singly-exponential in the number of parity ranks. Since the number
of parity ranks inM is polynomial in that of A, we can find costsure(M) in time singly-exponential
in the size of A. Since costsure(M) = scostI/O(L(A)), we are done.

For the lower bound, we note that the problem of deciding whether scostI/O(L(A)) > 0 is
EXPTIME-hard even for a restricted class of automata, namely looping automata [3]. J

The input to the synthesis problem is typically given as an LTL formula, rather than a DPW.
Then, the translation from LTL to a DPW involves a doubly-exponential blowup. Thus, a naive
solution for computing the sensing cost of a specification given by an LTL formula is in 3EXPTIME.
However, by translating the formula to a UPW, rather than a DPW, we show how we can avoid one
exponent, thus matching the 2EXPTIME complexity of standard Boolean synthesis.

I Theorem 15. Consider an LTL specification ψ over I ∪O. We can compute scostI/O(L(ψ)) in
doubly-exponential time.

Proof. We start by translating ψ to a UPW A of size single-exponential in the size of ψ. This can
be done, for example, by translating ¬ψ to a nondeterministic Büchi automaton [21] and dualizing it.
We then follow the proof of Theorem 14, by adding the universal transitions described there directly
to the UPW A. Thus, when we finally determinize the UPW to a DPW, the size of the DPW is
doubly-exponential, so computing the sensing cost can also be done in doubly-exponential time. J
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14 Minimizing Expected Cost Under Hard Boolean Constraints

A Calculating the Sure Cost in the Infinite-Memory Case

Our algorithm uses the notion of attractors, defined below. Consider a set R ⊆ S. A environment
attractor for R, denoted Attrenv(R) is defined inductively as follows. First, T0 = R. Now, for
every i > 0, let Ti+1 = Ti ∪ {s ∈ S1 : for every a ∈ A1(s), we have that δ1(s, a) ∈ Ti} ∪ {s ∈
S2 : there exists a ∈ A2(s) s.t. δ2(s, a) ∈ Ti and P(s,a)>0}. Then, Attrenv(R) =

⋃
i Ti. It is well

known that Attrenv(R) can be computed in time polynomial in the description ofM. We analogously
define the system attractor Attrsys(R), by swapping the roles of Players 1 and 2.

A.1 Finding the Maximal GECs ofM

In order to find the maximal GECs ofM, we proceed as follows.
1. Compute the maximal EC decomposition ofM.
2. For every maximal EC C, if C is not good (i.e., the maximal parity rank in C is odd), remove it

from the graph Attrenv(Cmax) and go to (1).
3. Once all the remaining components are good, return them.
Note that upon returning to step (1) from (2), it may be that the graph ofM is not connected. Still,
we find the decomposition in all the components.

It is not hard to see that all the steps of the algorithm are polynimial. In particular, finding the
maximal EC decomposition ofM takes polynomial time [9].

A.2 Proof of Lemma 4

Consider a memoryless strategy fC that maximizes the probability to reach Cmax, and a memoryless
strategy g whose expected cost inMMDP|sC is v(s) = v(C). By Theorem 1, such a strategy g exists.

We construct an infinite-memory strategy h that works in phases, as follows. In phase 1, h works
in iterations. In iteration i, the strategy h plays g for 22i steps. Then, h plays fC for γε · n · 2i
steps, where γε is a constant we determine later and n is the number of states ofM. If, during these
22i + γε2i steps, the generated play reached Cmax, then we proceed to the next iteration. Otherwise,
h goes to phase 2, in which it plays a parity-winning strategy (which exists, since every state inM
is parity winning).

Clearly, if the play generated by h never reaches Phase 2, then playing g for 22i steps is the
dominant factor, and we have that cost(h) = cost(g) ≤ v(s). Thus, it remains to bound the probab-
ility that the play reaches Phase 2. Denote by λ the maximal probability that a play of fC does not
reach Cmax within n steps, where the maximum is taken over all states of C. Since C is strongly
connected, it follows that 0 ≤ λ < 1. Thus, the probability of not reaching Phase 2 is bounded from
below by

∏∞
i=1(1− λγε2i). The latter expression converges to a number p in (0, 1] that is inversely-

related to γε. Therefore, by setting γε large enough, we can lower the probability of reaching Phase
2 arbitrarily. Since the cost of a play after reaching Phase 2 is bounded from above by W , the claim
follows.

A.3 A proof that costsure(M) = cost(M′)

We start with the “easy” direction, proving that costsure(M) ≥ cost(M ′). Consider a winning
strategy f forM. With probability 1, the play of f inM reaches and stays in some GEC C. From
every state in C, the minimal expected cost (when staying in C) is v(C). Indeed, v(C) is the cost
of an MDP without the parity condition, which can only lower the minimal expected cost. Thus, we
have that costM(f) ≥

∑
C is a GEC Pr(f reaches and stays in C) · v(C).

Consider the strategy f as a strategy forM′. Then, costM′(f) =
∑
C is a GEC Pr(f reaches and stays in C)·

v(C), and we conclude that costsure(M) ≥ cost(M′).
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For the other direction, we show that costsure(M) ≤ cost(M′). SinceM′ is an MDP, then there
exists an optimal memoryless strategy f ′ such that costM′(f ′) = cost(M′). We show that for every
ε > 0, there exists a winning strategy f forM such that costM(f) ≤ costM′(f ′) + ε.

Observe that since f ′ is memoryless and optimal, there exists a set of ECs C such that for every
C ∈ C, once f ′ reaches a state s ∈ C, it stays in C forever. Moreover, observe that every C ∈ C
must be a GEC. Indeed, the states outside a GEC inM′ have value 2W + 1, but from every state in
M there exists a strategy that is parity-winning, and therefore ensures that a GEC is reached. Thus,
if f ′ gets stuck in an EC that is not good, we can modify it to reach a GEC, thus decreasing its cost.

Let ε > 0. There exists some N0 ∈ N such that after N0 steps, w.p. at least 1− ε′ a play inM′f ′

reaches a GEC in C (for ε′ > 0 which we will fix later). We obtain f from f ′ as follows. f simulates
f ′ for N0 steps. During this simulation, whenever f reaches a GEC C ∈ C, f starts playing the
strategy described in the proof of Lemma 4 for ε′. After N0 steps, f plays a parity-winning strategy.

Clearly f is parity-winning. In addition, by our choice of N0 and by Lemma 4, it follows that
w.p. at least 1− ε′, the cost of f is at most costM′(f)+ ε′. Thus, costM(f) ≤ (1− ε′)(costM′(f)+
ε′) + ε′|W |, and for a small enough ε′, this is at most costM′(f) + ε.

B Calculating the Sure Cost in the finite-Memory Case

B.1 Proof of Lemma 6

Assume w.l.o.g that the maximal odd priority in C is at least that of D. Let f, g be witnesses to C
and D being SGEC, respectively. We construct a witness h to C ∪D being a SGEC. In every state
q ∈ C, h behaves as f does. In a state s ∈ D \ C, h proceeds as follows. (1) It attempts to reach
a state s′ ∈ C ∩ D (from which it behaves as f ) within n0 ∈ N steps, for a large enough n0 such
that the probability of reaching C is positive (which exists, since C ∪D is an EC). (2) If C was not
reached within n0 steps, h plays g until C

max
even is reached, and goes back to (1).

Observe that C
max
even ⊆ (C ∪D)max

even. Clearly, the play under h reaches C
max
even w.p. 1. Moreover, if

the play does not reach C
max
even, then it is winning in the parity condition. Indeed, if the play under h

reaches C, then this holds (since f is a witness for C being a SGEC). Otherwise, the play of h either
reaches D

max
even infinitely often, in which case it is winning in the parity condition, or it plays as g and

does not reach D
max
even, in which case it is parity winning, since g is a witness for D being a SGEC.

We conclude that C ∪D is a SGEC.

B.2 Proof of Lemma 7

Our solution proceeds as follows. We start by reducing the problem of deciding whether C is a
SGEC to the problem of deciding whether there is a winning strategy in a parity-Büchi game, using
techniques from [7]. We then show how the latter can be solved by a reduction to positive Mean-
Payoff parity games.

A parity-Büchi game is a two player game G = 〈S1, S2, s0, A1, A2, δ1, δ2, (α, β)〉 that is similar
to a parity game, with the exception that the winning condition is composed of two conditions: α is
a parity ranking function, and β ⊆ Q is a set of accepting states. A play of G is winning for Player 1
iff it satisfies the parity condition α, and visits β infinitely often.

We start by describing a reduction from the problem of deciding whether C is a SGEC to the
problem of solving a parity-Büchi game. First, we check that C is a GEC. If maxs∈C {α(s)} is odd,
then C is not a SGEC and we are done.

Consider the parity gameMP|C . We obtain fromMP|C a parity-Büchi game G as follows. First,
we change every state in C

max
even to a Büchi accepting sink (while keeping the parity rank).

For every state s of Player 2 that is not in C
max
even, we replace s with the gadget in Figure 2.
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Figure 2 Gadget for the reduction in Lemma 7. In M, we have δ(s, a1) = t and δ(s, a2) = r.

Formally, we add the states s1, s2, where s1 is a Player 1 state and s2 is a Player 2 state, whose
successors are those of s (with the same available actions), and the successors of s are s1 and s2.

We set the parity ranks of the gadget to be α(s1) = α(s2) = 0, and for the Büchi objective, we
set s2 ∈ β and s1 /∈ β.

We claim that C is a SGEC iff Player 1 wins in G from every state. For the first direction, assume
C is a SGEC, and let f be a witness strategy. Thus, f is finite memory strategy that reaches C

max
even

w.p. 1, and wins in the parity condition in every play that does not reach C
max
even.

We obtain from f a strategy g for Player 1 in G as follows. g plays similarly to f , unless a
state s1 as in the gadget is reached, for some environment state s. Then g chooses the neighbor that
minimizes the distance to Attrsys(C

max
even) (we assume w.l.o.g that in Attrsys(C

max
even), the strategy

f leads surely to C
max
even). We claim that g wins parity+Büchi in G. Indeed, consider a strategy g′

for Player 2 in G, and consider the play ρ induced by g and g′. Note that g′ induces a strategy in
MP|C by assigning each state s ∈ S2 the action g(s2). Assume by way of contradiction that ρ is not
winning for Player 1. Thus, either the Büchi condition or the parity conditions do not hold. If the
Büchi condition does not hold, then after a finite prefix, for every environment state s, g′ moves the
play to s1 in the gadget (since s2 ∈ β). Thus, however, eventually Player 1 forces the play to C

max
even,

which are Büchi-winning sinks, and this the Büchi condition and the parity conditions are satisfied.
Thus, the Büchi condition holds. If the parity condition does not hold, then the play does not reach
C

max
even. Since f is a witness strategy for C being a SGEC, then every play inMP|C induced by f and

does not reach C
max
even is parity winning. Thus, the play in G induces similar parity ranks, with the

exception of padding 0 ranks within the gadgets. In particular, this play is also parity winning in G.
Since this is true for every strategy g′, we conclude that f is parity-Büchi winning in G.

conversely, assume that f is a parity-Büchi winning strategy in G. In addition, we assume that
f is finite memory. Since parity-Büchi is an ω-regular winning condition, then Player 1 has a finite-
memory winning strategy. The strategy f induces a strategy for Player 1 in M|C . We claim that
this is a witness for C being a SGEC. Indeed, similarly to the above, it is easy to see that f is parity
winning if C

max
even is not reached. It remains to prove that C

max
even is reached w.p. 1.

Since f has finite memory, then there exists n ∈ N such that for every state s in G, if Player 2
chooses t1 from every environment state t for n steps, then f reaches C

max
even. However, w.p. 1, a

stochastic environment chooses the same n choices that f would have chosen in the above t1 states.
Thus, w.p. 1, f reaches C

max
even.

This completes the reduction to parity-Büchi games.
Next, we reduce parity-Büchi games to Mean-payoff parity games by assigning every state in β

payoff 1, and the rest payoff 0. Then, the goal is to win parity while having strictly positive long-run
mean-payoff. These games can be solved in NP∩co-NP [7].

In addition, in case C is not a SGEC, our solution finds the winning states for Player 1, which are
the super-good states.
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B.3 Proof of Theorem 8

Intuitively, our algorithm works in two phases. First, for every odd rank k, we find the maximal
SGEC whose maximal odd rank is k. Then, we choose among the SGEC the maximal ones. We start
by describing a subroutine for the first phase.

Let d be the maximal parity rank inM, and consider an odd rank k ∈ {−1, . . . , d}. We compute
the maximal SGEC with maximal odd rank k as follows.
1. Compute the maximal EC decomposition C.
2. For every EC C ∈ C,

a. Let odd>k(C) = {s ∈ C : α(s) > k and α(s) is odd}. If odd>k(C) 6= ∅, remove Attrenv(odd>k)
from C, and go to (1).

b. Decide if C is a SGEC. If it is, return it. Otherwise, find the set W of super-good states,
remove Attrenv(C \W ) from C, and go to (1).

Next, we run this subroutine for every odd k ∈ {−1, . . . , d}] to obtain SGEC C1, ..., Cm. Finally,
for every Ci, Cj , if Ci ⊆ Cj , we remove Cj from the list.

Clearly this algorithm has polynomially many iterations, and in each iteration we solve an NP∩co-
NP problem, as per Lemma 7. Thus, the algorithm solves the problem in NP∩co-NP.

It remains to prove the correctness of the algorithm. By Lemma 7, every component that is
returned in the subroutine is a SGEC. Consider a SGEC C with maximal odd rank k. In iteration k
of the algorithm, none of the states of C are removed in steps 2a and 2b. Thus, the subroutine returns
a SGEC D such that C ⊆ D. Finally, by Lemma 6, if Ci ∩Cj 6= ∅, then there exists a SGEC E such
that Ci ∪ Cj ⊆ E. Thus, E is also returned in the list, and will replace Ci and Cj . We conclude that
the returned list contains exactly the maximal SGEC ofM.

B.4 Proof of Lemma 10

Let f be a finite-memory strategy with memory M . Consider a history h ∈ S∗ × S1. Let m ∈M be
the memory element that f reaches after reading h, we define the strategy fh to be f when starting
from m. Note that the set F = {fh : h ∈ S∗ × S1} is finite, since M is finite. We claim that there
exists g ∈ F that satisfies the conditions of the lemma.

Indeed, assume by way of contradiction that for every g ∈ F we have that PrMs(inf(g) = C) <
1. Thus, there exists ε > 0 such that PrMs(inf(g) = C) < 1 − ε for every g ∈ F . It follows that
there exists δ > 0 such that for every history h, w.p. at least δ the strategy fh from s reaches either
a state t /∈ C or a state t′ ∈ C such that there exists s′ ∈ C that is not reachable from t′ under fh.
Since δ is independent of h, and since this is true for every h, we get that PrM(inf(f) = C) = 0, in
contradiction to the assumption.

Let G = {g ∈ F : PrMs(inf(g) = C) = 1}, then we conclude that G 6= ∅. Assume by way of
contradiction that for every g ∈ G it holds that there exists a play of g from some state s ∈ C that
leaves C (which happens after a finite number of steps). Thus, there exists some δ > 0 such that w.p.
at least δ (independent of g), for every g′ ∈ G and every state s ∈ C a play of g′ leaves C (since
every g′ ∈ G visits every state of C w.p. 1). This contradicts the fact that PrMs(inf(g) = C) = 1.
We conclude that there exists g ∈ G such that every play of g stays in C forever.

In addition, since f is parity winning, and the parity condition is independent of the history, then
g is parity winning too.

B.5 Proof of Lemma 11

Let g be a strategy obtained as per Lemma 10. Thus, PrMs(inf(g) = C) = 1 for every s ∈ C, every
play of g from s stays in C, and g is parity winning. We show that C is a SGEC by showing that g is
a witness thereof. Indeed, w.p. 1 g visits every state of C, and in particular g reaches C

max
even w.p. 1.
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In addition, g is parity-winning, so every play of g is parity winning, in particular plays that do not
reach C

max
even. J

C Applications

C.1 Automata, and the Boolean Synthesis Problem

An automaton is a tuple A = 〈Σ, Q, q0, δ, α〉, where Q is a finite set of states, q0 ∈ Q is an initial
state, δ : Q × Σ → 2Q is a transition function, and α is an acceptance condition. We define some
acceptance conditions below. The automaton A may run on finite or infinite words. A run of A
on a finite word w = σ1 · σ2 · · ·σn ∈ Σ∗ is a sequence of states r = r0, r1, . . . , rn such that
ri+1 ∈ δ(ri, σi+1) for all 0 ≤ i < n. When w is infinite, so is a run of A on it. For an infinite run r,
we denote by inf(r) the set of states that r visits infinitely often.

We consider two acceptance conditions. When A runs on finite words, we have that α ⊆ Q is
a set of accepting states. Then, a finite run r0, r1, . . . , rn is accepting if rn ∈ α. When A runs on
infinite words, then α : Q → {0, ..., d} is a parity acceptance condition. For a state q ∈ Q, we refer
to α(q) as the rank of q. Then, an infinite run r is accepting if max {α(q) : q ∈ inf(r)} is even.

The automata we consider are universal. Thus, a word w ∈ Σω is accepted if all the runs of A on
it are accepting. The language ofA, denoted L(A), is the set of words thatA accepts. If |δ(q, σ)| = 1
for every q ∈ Q and σ ∈ Σ, we say that A is deterministic. Note that in this case, A has exactly one
run on every word.

The classical solution to the Boolean synthesis problem proceeds as follows. Consider a specific-
ation DPWA = 〈2I × 2O, Q, q0, δ, α〉. We obtain fromA a parity game G = 〈Q× 2I , Q, q0, 2O, 2I ,
δ1, δ2, α

′〉, where δ1(〈q, i〉, o) = δ(q, i ∪ o), and δ2(q, i) = 〈q, i〉. Thus, Player 2, the environment,
controls the inputs and his actions correspond to assignments to the input signals. His states are the
states of A, and he moves to states that maintain the assignment he gives to the input signals. Then,
Player 1, the system, controls the outputs and his actions correspond to assignments to the output
signals. He moves in states that maintain the assignment to the input signals given by Player 2, and
his transitions update the state of A. Then, α′ in induced by α. Formally, for every q ∈ Q and
for every i ∈ 2I , we have that α′(q) = α′(〈q, i〉) = α(q). It is not hard to see that a winning
strategy for Player 1 in G induces a transducer that realizes A [18]. Finding a winning strategy for
Player 1 amounts to solving a turn-based parity game, whose complexity is NP∩co-NP. Alternatively,
deterministic algorithms for solving parity games run in time polynomial in the number of states, and
singly-exponential in the number of parity ranks. When the starting point is an LTL formula ψ,
the translation to a DPW involves a doubly-exponential blow up, but the index of the DPW is only
exponential, so the problem is 2EXPTIME-complete [20].

C.2 Synthesis with Penalties

Let Ui = 〈2I×2O, Qi, qi0, δi, αi〉 Let S = Q×S1×· · ·Sm and s0 = 〈q0, q
1
0 , . . . , q

m
0 〉. We define the

parity-MDPM = 〈S×2I , S, s0, 2O, 2I , δ1, δ2,P, cost, α′〉 where for every s = 〈q, q1, ..., qm〉 ∈ S,
i ∈ 2I , and o ∈ 2O, we have the following. The transition functions are δ1(〈s, i〉, o) = 〈δ(q, i ∪
o), δ1(q1, i∪o), . . . , δm(qm, i∪o)〉, and δ2(s, i) = 〈s, i〉, the cost function is given by cost(〈s, i〉) = 0
and cost(s) =

∑
j:qj∈αj γ(j), for the penally function γ, and the acceptance condition is α(s) =

α(〈s, i〉) = α(q). Finally, we assume that the environment behaves uniformly. That is, in every step
it outputs every i ⊆ I with probability 2−|I|. Thus, P(s, i) = 2−|I|. This assumption can easily be
replaced by a different probabilistic model.

It is easy to see that a winning strategy for Player 1 inM corresponds to a transducer that realizes
A, and that the cost of every computation is the average penalty along the computation. Thus, a
solution to the synthesis with penalties problem amounts to solvingM. The size ofM is polynomial
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in the size of the automata A,U1, . . .Um, and is exponential in m. However, we observe that the
role of U1, . . . ,Um is only for the purpose of costs, and does not affect the parity constraints. Thus,
we can solve the problem in NP∩co-NP in the size of the automata, and in time singly-exponential
in m. Finally, if A is obtained by translating an LTL formula ψ into a DPW, then similarly to the
case of Boolean synthesis, we can solve the problem in times doubly-exponential in the length of ψ,
polynomial in U1, . . . ,Um, and singly-exponential in m.

C.3 Proof of Theorem 13

We identify a subset i ⊆ I with its characteristic function i : I → {0, 1}.
Consider the DPW A = 〈2I × 2O, Q, q0, δ, α〉. We obtain from A the UPW A′ = 〈2I × 2I ×

2O, Q, q0, δ
′, α〉 with δ′ defined as follows. Consider a letter 〈i, x, o〉 ∈ 2I × 2I × 2O. We think

of i and o as truth assignments for the input and output signals, respectively, and we think of x as
a set of sensed signals. Consider the set i/x = {j ∈ 2I : ∀p ∈ x, j(p) = i(p)}. Intuitively, i/x is
the set of input assignments that agree with i on all the signals in x. For a state q ∈ Q, we define
δ′(q, 〈i, x, o〉) = {δ(q, (j, o)) : j ∈ i/x}.

Intuitively, when thinking of A′ as a game between the system and the environment, then at each
step, the system chooses a set of sensed inputs x and an output o. Then, the environment chooses a
set of inputs i, but in the next step the system can only see the inputs in i that are sensed in x, and
thus moves universally with every input that agrees with i on the sensed inputs in x.

We proceed to determinize A′ to a DPW D = 〈2I × 2I × 2O, S, ρ, s0, β〉. We then obtain
from D a parity game, as described above, with Player 1 (the system) controlling the set of sensed
inputs and the output, and Player 2 (the environment) controlling the concrete inputs. Formally,
the game GD = 〈S1 ∪ S2, START, A1, A2, δ1, δ2, β

′〉 is defined as follows. The states are S1 =
(S×2I ×2I)∪{START} and S2 = S×2I . The actions for Player 1 in every state are A1 = 2I ×2O
and are A2 = 2I for Player 2 (we omit the state as the available actions are independent of the state).
The transition function is defined as follows. For a state 〈s, x, i〉 ∈ S1 and action 〈x′, o〉 ∈ A1 we
have δ1(〈s, x, i〉, 〈x′, o〉) = 〈ρ(s, 〈i, x, o〉), x′〉 as well as δ1(START, 〈x′, o〉) = 〈s0, x

′〉. For a state
〈s, x〉 ∈ S2 and action i ∈ A2 we have δ2(〈s, x〉, i) = 〈s, x, i〉.

Intuitively, the state 〈s, x, i〉 ∈ S1 represents that D is in state s, the system has chosen to sense
the signals in x, and the environment gave the concrete input i. Then, the action 〈x′, o〉means that the
system responded with output o, and chose to sense x′ in the next step, taking the game to the state
〈s′, x′〉, where s′ = ρ(s, 〈i, x, o〉). Then, in state 〈s′, x′〉, the environment chooses a new concrete
input i′.

We define the acceptance condition β′ as follows. For every s ∈ S and i, x ∈ 2I , we have
β′(〈s, x, i〉) = β′(〈s, x〉) = β(s), and we arbitrarily set β′(START) = 0 (since START is visited only
once, this has no effect).

Note that crucially, for every j, j′ ∈ i/x, the behavior of GD from state 〈s, x, j〉 is identical to
the behavior from 〈s, x, j′〉. This follows from the universal transitions in A′. Thus, once Player 1
chooses x, the inputs that are not sensed do not play a role. This captures the fact that every winning
strategy for the system must only rely on the values j assigns to the sensed inputs x.

Finally, the parity-MDP M is obtained from GD by fixing Player 2 with a uniform-stochastic
strategy and adding costs according to the number of sensed inputs at each state. Recall that the
actions of Player 2 are 2I . Thus, in state 〈s, x〉 ∈ S2, the probability of Player 2 playing j ∈ 2I is
2−|I|. Note that by our observation above, every j, j′ ∈ i/x, induce the same transitions. Thus, the
probability of transition from state 〈s, x〉 to 〈s, x, j〉 is 2−|x|.

The cost function assigns cost |x| to states 〈s, x〉 and 〈s, x, j〉, for every s ∈ S and j ∈ 2I .
We now proceed to analyze the correctness of the construction. Consider a (not necessarily finite)

transducer T = 〈I,O, T, t0, τ, ρ〉 that realizes the specification A. We identify with T a strategy fT
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forM as follows. In state START we have fT (START) = 〈sensed(t0), ρ(t0)〉. Then, the strategy fT
keeps track of the state of T as follows. When T is in state t, and the state of the game is 〈s, x, i〉,
let t′ = τ(t, i). Then, we have that fT (〈s, x, i〉) = 〈sensed(t′), ρ(t′)〉. Observe that fT is essentially
implemented by the transducer T . In particular, if T has finite state space, then f has finite memory.

We claim that costsure(fT ) = scost(T ). We start by showing that fT is sure winning in M
(equivalently, that it is a winning strategy for Player 1 inGD). Consider an input sequence π ∈ (2I)∗,
let q and t be the states that A and T reach, respectively, when they interact on π. let x = sensed(t),
then for every i, j ∈ 2I such that j ∈ i/x we have that τ(t, i) = τ(t, j). Thus, the behavior of T from
δ(q, i∪ρ(t)) and from δ(q, j∪ρ(t)) is the same. It follows that T induces a realizing strategy for the
UPW A′ (and hence a winning strategy for GD), where the additional 2I component in the alphabet
represents the sensing of the current state of T . However, this is exactly the behavior prescribed by
fT , so fT is winning in GD.

Next, observe that by the above, for every input sequence π ∈ (2I)ω , the (prefix of the) play of
GD induced by Player 1 playing fT and Player 2 playing π is r = START, 〈s1, x1〉, 〈s1, x1, π1〉, ...,
〈sm, xm〉, 〈sm, xm, πm〉, and we have that costm(fT , π) = 1

2m+1 (
∑m
k=1 2 · |xk|), while for the run

r = t1, t2, ..., tm of T on the first m letters of π we have that scost(r) = 1
m

∑m
k=1 scost(tk). By the

definition of T andM, we have scost(tk) = |xk| = cost(〈sk, xk〉) = cost(〈sk, xk, πk〉). Moreover,
the probabilities ofM imply that every π such that |π| = m is played w.p. |2I |−m. Thus, by taking
m→∞, we get costsure(fT ) = scost(T ).

Since this is true for every realizing transducer T , it follows that costsure(M) ≤ scostI/O(L(A)).
Conversely, consider a strategy f forM. A-priori, f can behave differently in states 〈s, x, i〉 and

〈s, x, j〉 for j ∈ i/x. However, as we observed above, the construction of A′ (and thus of D) implies
that f cannot decrease its cost by doing so, since the behavior of A′ is the same in both states. Thus,
we can assume w.l.o.g that f only depends on the values i assigns to the sensed inputs x. Now,
f induces a (possibly infinite) transducer Tf in an obvious manner - whenever f outputs 〈x, o〉, the
transducer outputs o. Similar arguments as the converse direction show that costsure(f) = scost(Tf ),
and thus costsure(M) ≥ scostI/O(L(A)), and we are done.
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