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The size of deterministic automata required for recognizing regular and ω-regular languages is a well-
studied measure for the complexity of languages. We introduce and study a new complexity measure,
based on the sensing required for recognizing the language. Intuitively, the sensing cost quantifies the
detail in which a random input word has to be read in order to decide its membership in the language.
We study the sensing cost of regular and ω-regular languages, as well as applications of the study in
practice, especially in the monitoring and synthesis of reactive systems.
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1. Introduction

Studying the complexity of a formal language, there are several complexity measures to
consider. When the language is given by means of a Turing Machine, the traditional mea-
sures are time and space demands. Theoretical interest as well as practical considerations
have motivated additional measures, such as randomness (the number of random bits re-
quired for the execution) [15] or communication complexity (number and length of mes-
sages required) [14]. For regular and ω-regular languages, given by means of finite-state

∗The paper gives an overview of the technical results in the papers [3] and [4]. The research leading to these
results has received funding from the European Research Council under the European Union’s 7th Framework
Programme (FP7/2007-2013, ERC grant no 278410).
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automata, the classical complexity measure is the size of a minimal deterministic automa-
ton that recognizes the language.

We introduce and study a new complexity measure, namely the sensing cost of the lan-
guage. Intuitively, the sensing cost of a language measures the detail with which a random
input word needs to be read in order to decide membership in the language. Sensing has
been studied in several other computer-science contexts. In theoretical computer science,
in methodologies such as PCP and property testing, we are allowed to sample or query
only part of the input [12]. In more practical applications, mathematical tools in signal pro-
cessing are used to reconstruct information based on compressed sensing [7], and in the
context of data streaming, one cannot store in memory the entire input, and therefore has
to approximate its properties according to partial “sketches” [16].

Our interest in regular sensing is motivated by the use of finite-state automata in rea-
soning about on-going behaviors of reactive systems. In particular, a big challenge in the
design of monitors is an optimization of the sensing needed for deciding the correctness of
observed behaviors. Our goal is to formalize regular sensing in the finite-state setting and
to study the sensing complexity measure for regular and ω-regular languages.

We consider languages over alphabets of the form 2P , for a finite set P of signals.
Consider a deterministic automaton A over an alphabet 2P . For a state q of A, we say that
a signal p ∈ P is sensed in q if at least one transition taken from q depends on the truth
value of p. The sensing cost of q is the number of signals it senses, and the sensing cost of
a run is the average sensing cost of states visited along the run. We extend the definition to
automata by assuming a uniform distribution of the inputs.a Thus, the sensing cost of A is
the limit of the expected sensing of runs over words of increasing length.b We show that
this definition coincides with one that is based on the stationary distribution of the Markov
chain induced by A, which enables us to calculate the sensing cost of an automaton in
polynomial time. The sensing cost of a language L, of either finite or infinite words, is then
the infimum of the sensing costs of deterministic automata for L. In the case of infinite
words, one can study different classes of automata, yet we show that the sensing cost is
independent of the acceptance condition being used.

We start by studying the sensing cost of regular languages of finite words. For the
complexity measure of size, the picture in the setting of finite words is very clean: each
language L has a unique minimal deterministic automaton (DFA), namely the residual
automaton RL whose states correspond to the equivalence classes of the Myhill-Nerode
right-congruence relation forL. We show that minimizing the state space of a DFA can only
reduce its sensing cost. Hence, the clean picture of the size measure is carried over to the
sensing measure: the sensing cost of a language L is attained in the DFARL. In particular,

aOur study and results apply also to a non-uniform distribution on the letters, given by a Markov chain.
bAlternatively, one could define the sensing cost of A as the cost of its “most sensing” run. Such a worst-case
approach is taken in [6], where the sensing cost needs to be kept under a certain budget in all computations, rather
than in expectation. We find the average-case approach we follow appropriate for sensing, as the cost of operating
sensors may well be amortized over different runs of the system, and requiring the budget to be kept under a
threshold in every run may be too restrictive. Thus, the automaton must answer correctly for every word, but the
sensing should be low only on average, and it is allowed to operate an expensive sensor now and then.
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since DFAs can be minimized in polynomial time, we can construct in polynomial time a
minimally-sensing DFA, and can compute in polynomial time the sensing cost of languages
given by DFAs.

We then study the sensing cost of ω-regular languages, given by means of determin-
istic parity automata (DPAs). Recall the size complexity measure. There, the picture for
languages of infinite words is not clean: A language needs not have a unique minimal
DPA, and the problem of finding one is NP-complete [21]. It turns out that the situation is
challenging also in the sensing measure. First, we show that different minimal DPAs for a
language may have different sensing costs. In fact, bigger DPAs may have smaller sensing
costs.

To see the intricacy in the case of ω-regular languages, consider a component in a
vacuum-cleaning robot that monitors the dust collector and checks that it is empty infinitely
often. The proposition empty indicates whether the collector is empty and a sensor needs to
be activated in order to know its truth value. One implementation of the component would
sense empty throughout the computation. This corresponds to the classical two-state DPA
for “infinitely often empty”. A different implementation can give up the sensing of empty

for some fixed number k of states, then wait for empty to hold, and so forth. The bigger k
is, the lazier is the sensing and the smaller the sensing cost is. As the example demonstrates,
there may be a trade-off between the sensing cost of an implementation and its size. Other
considerations, like a preference to have eventualities satisfied as soon as possible, enter
the picture too.

Our main result is that despite the above intricacy, the sensing cost of an ω-regular
language L is the sensing cost of the residual automaton RL for L. It follows that the
sensing cost of an ω-regular language can be computed in polynomial time. Unlike the case
of finite words, it may not be possible to define L on top ofRL. Interestingly, however,RL
does capture exactly the sensing required for recognizing L. The proof goes via a sequence
(Bn)∞n=1 of DPAs whose sensing costs converge to that of L. The DPA Bn is obtained from
a DPAA for L by a lazy sensing strategy that spends time in n copies ofRL between visits
to A, but spends enough time in A to ensure that the language is L.

In the context of formal methods, sensing has two appealing applications. The first is
monitoring: we are given a computation and we have to decide whether it satisfies a speci-
fication. When the computations are over 2P , we want to design a monitor that minimizes
the expected average number of sensors used in the monitoring process. Monitoring is es-
pecially useful when reasoning about safety specifications [11]. There, every computation
that violates the specification has a bad prefix – one all whose extensions are not in L.
Hence, as long as the computation is a prefix of some word in L, the monitor continues to
sense and examine the computation. Once a bad prefix is detected, the monitor declares an
error and no further sensing is required. The second application is synthesis. Here, the set P
of signals is partitioned into sets I and O of input and output signals, respectively. We are
given a specification L over the alphabet 2I∪O, and our goal is to construct an I/O trans-
ducer that realizes L. That is, for every sequence of assignments to the input signals, the
transducer generates a sequence of assignments to the output signals so that the obtained
computation is in L [18]. Our goal is to construct a transducer that minimizes the expected
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average number of sensors (of input signals) that are used along the interaction.
The definition of sensing cost described above falls short in the above two applications.

For the first, the definition above does not distinguish between words in the language and
words not in the language, whereas in monitoring we care only for words in the language. In
particular, according to the definition above, the sensing cost of a safety language is always
0. For the second, the definition above considers automata and does not partition P into
I and O, whereas synthesis refers to I/O-transducers. Moreover, unlike automata, correct
transducers generate only computations in the language, and they need not generate all
words in the language – only these that ensure receptiveness with respect to all sequences
of inputs.

We thus continue and study sensing in the context of monitoring and synthesis. We sug-
gest definitions that capture the intuition of “required number of sensors” in these settings
and solve the problems of generating monitors and transducers that minimize sensing. For
both settings, we focus on safety languages.

Consider, for example, a traffic monitor that has access to various sensors on roads and
whose goal is to detect accidents. Once a road accident is detected, an alarm is raised to
the proper authorities and the monitoring is stopped until the accident has been taken care
of. The monitor can read the speed of cars along the roads, as well as the state of traffic
lights. An accident is detected when some cars do not move even though no traffic light is
stopping them. Sensing the speed of every car and checking every traffic light requires huge
sensing. Our goal is to find a monitor that minimizes the required sensing and still detects
all accidents. In the synthesis setting, our goal is extended to designing a transducer that
controls the traffic lights according to the speed of the traffic in each direction, and satisfies
some specification (say, give priority to slow traffic), while minimizing the sensing of cars.

We revise our definition as follows. Let us start with monitoring. Recall that the defi-
nition of sensing above assumes a uniform probability on the assignments to the signals,
whereas in monitoring we want to consider instead more intricate probability spaces –
ones that restrict attention to words in the language. As we show, there is more than one
way to define such probability spaces, each leading to a different measure. We study two
such measures. In the first, we sample a word randomly, letter by letter, according to a
given distribution, allowing only letters that do not generate bad prefixes. In the second,
we construct a sample space directly on the words in the language. We show that in both
definitions, we can compute the sensing cost of the language in polynomial time, and that
the minimal sensing cost is attained by a minimal-size automaton. Thus, luckily enough,
even though different ways in which a computation may be given in an online manner calls
for two definitions of sensing cost, the design of a minimally-sensing monitor is the same
in the two definitions.

Let us continue to synthesis. Recall that there, given a specification over sets I and
O of input and output signals, the goal is to construct a finite-state system that, given a
sequence of input signals, generates a computation that satisfies the specification. In each
moment in time, the system reads an assignment to the input signals, namely a letter in 2I ,
which requires the activation of |I| Boolean sensors. A well-studied special case of limited
sensing is synthesis with incomplete information. There, the system can read only a subset
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of the signals in I , and should still generate only computations that satisfy the specification
[13, 5]. A more sophisticated case of sensing in the context of synthesis is studied in [6],
where the system can read some of the input signals some of the time. In more detail,
sensing the truth value of an input signal has a cost, the system has a budget for sensing,
and it tries to realize the specification while minimizing the required sensing budget.

The main challenge there is that we no longer need to consider all words in the lan-
guage. This introduces a new degree of freedom, which requires different techniques than
those used for the definition above. In particular, while a minimal-size transducer for a
safety language can be defined on top of the state space of a minimal-size deterministic
automaton for the language, this is not the case when we seek minimally-sensing transduc-
ers. In fact, we show that a minimally-sensing transducer for a safety language might be
exponentially bigger than a minimal-size automaton for the language. Consequently, the
problems of computing the minimal sensing cost and finding a minimally-sensing trans-
ducer are EXPTIME-complete even for specifications given by means of deterministic
safety automata. On the positive side, a transducer that attains the minimal sensing cost
always exists for safety specifications.

2. Preliminaries

2.1. Automata and Transducers

A deterministic automaton on finite words (DFA, for short) is A = 〈Σ, Q, q0, δ, α〉, where
Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ 9 Q is a partial transition
function, and α ⊆ Q is a set of accepting states. We sometimes refer to δ as a relation
∆ ⊆ Q × Σ × Q, with 〈q, σ, q′〉 ∈ ∆ iff δ(q, σ) = q′. A run of A on a word w =

σ1 · σ2 · · ·σm ∈ Σ∗ is the sequence of states q0, q1, . . . , qm such that qi+1 = δ(qi, σi+1)

for all i ≥ 0. The run is accepting if qm ∈ α. A word w ∈ Σ∗ is accepted byA if the run of
A on w is accepting. The language of A, denoted L(A), is the set of words that A accepts.
For a state q ∈ Q, we use Aq to denote A with initial state q.

We sometimes refer also to nondeterministic automata (NFAs), where δ : Q×Σ→ 2Q

suggests several possible successor states. Thus, an NFA may have several runs on an input
word w, and it accepts w if at least one of them is accepting.

Consider a language L ⊆ Σ∗. For two finite words u1 and u2, we say that u1 and u2 are
right L-indistinguishable, denoted u1 ∼L u2, if for every z ∈ Σ∗, we have that u1 · z ∈ L
iff u2 · z ∈ L. Thus, ∼L is the Myhill-Nerode right congruence used for minimizing
automata. For u ∈ Σ∗, let [u] denote the equivalence class of u in ∼L and let 〈L〉 denote
the set of all equivalence classes. Each class [u] ∈ 〈L〉 is associated with the residual
language u−1L = {w : uw ∈ L}. When L is regular, the set 〈L〉 is finite, and induces the
residual automaton of L, defined byRL = 〈Σ, 〈L〉,∆L, [ε], α〉, with 〈[u], a, [u · a]〉 ∈ ∆L

for all [u] ∈ 〈L〉 and a ∈ Σ. Also, α contains all classes [u] with u ∈ L. The DFA RL is
well defined and is the unique minimal DFA for L.

A deterministic automaton on infinite words is A = 〈Σ, Q, q0, δ, α〉, where Q, q0, and
δ are as in DFA, and α is an acceptance condition. A run of A on an infinite input word
w = σ1 · σ2 · · · ∈ Σω is defined as for automata on finite words, except that the sequence
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of visited states is now infinite. For a run r = q0, q1, . . ., let inf (r) denote the set of
states that r visits infinitely often. Formally, inf (r) = {q : q = qi for infinitely many i’s}.
We consider the following acceptance conditions. In a Büchi automaton, the acceptance
condition is a set α ⊆ Q and a run r is accepting iff inf (r) ∩ α 6= ∅. Dually, in a co-
Büchi automaton, again α ⊆ Q, but r is accepting iff inf (r) ∩ α = ∅. In a deterministic
looping automaton, every run is accepting. Thus, a word is accepted if there is a run of the
automaton on it.c Since every run is accepting, we omit the acceptance condition and write
A = 〈Σ, Q, q0, δ〉. Finally, a parity condition is a mapping α : Q→ [i, . . . , j], for integers
i ≤ j, and a run r is accepting iff maxq∈inf (r){α(q)} is even. We use the acronyms NBA,
DBA, NCA, DCA, DLA, NLA, NPA, and DPA to denote nondeterministic/deterministic
Büchi/co-Büchi/looping/parity automata.

The definitions of right congruence ∼L as well as the residual automatonRL naturally
extend to languages L ⊆ Σω , by saying that for finite words u1, u1 ∈ Σ∗, we have u1 ∼L
u2 if for every z ∈ Σω it holds that u1 · z ∈ L iff u2 · z ∈ L. The relation ∼L remains an
equivalence relation in this case, and has finite index for ω-regular languages. Therefore,
the residual automatonRL is well defined.

Here, however, RL need not accept the language L, and we ignore its acceptance con-
dition. Indeed, consider for example the language L ⊆ {a, b}ω of words in which a occurs
infinitely often, then it is easy to see that ∼L has a single equivalence class, and therefore
RL has a single state, and cannot recognize L with any acceptance condition.

For finite sets I and O of input and output signals, respectively, an I/O transducer
is T = 〈I,O,Q, q0, δ, ρ〉, where Q is a finite set of states, q0 ∈ Q is an initial state,
δ : Q× 2I → Q is a total transition function, and ρ : Q→ 2O is a labeling function on the
states. The run of T on a word w = i0 · i1 · · · ∈ (2I)

ω is the sequence of states q0, q1, . . .

such that qk+1 = δ(qk, ik) for all k ≥ 0. The output of T on w is then o1, o2, . . . ∈ (2O)
ω

where ok = ρ(qk) for all k ≥ 1. Note that the first output assignment is that of q1, and we
do not consider ρ(q0). This reflects the fact that the environment initiates the interaction.
The computation of T on w is then T (w) = i0 ∪ o1, i1 ∪ o2, . . . ∈ (2I∪O)ω .

Note that the structure of each I/O-transducer T induces a DLAAT over the alphabet
2I with a total transition relation. Thus, the language of the DLA is (2I)ω , reflecting the
receptiveness of T .

2.2. Safety Languages

Consider a language L ⊆ Σω . A finite word x ∈ Σ∗ is a bad prefix for L if for every
y ∈ Σω , we have that x · y 6∈ L. That is, x is a bad prefix if all its extensions are words not
in L. The language L is then a safety language if every word not in L has a bad prefix. For
a language L, let pref (L) = {x ∈ Σ∗ : there exists y ∈ Σω such that x · y ∈ L} be the set
of prefixes of words in L. Note that each word in Σ∗ is either in pref (L) or is a bad prefix
for L. Since the set pref (L) for a safety language L is fusion closed (that is, a word is in L
iff all its prefixes are in pref (L)), an ω-regular language is safety iff it can be recognized

cNote that a looping automaton is a special case of Büchi with α = Q.
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by a DLA [22].
Consider a safety language L over sets I andO of input and output signals. We say that

L is I/O-realizable if there exists an I/O transducer T all whose computations are in L.
Thus, for every w ∈ (2I)

ω , we have that T (w) ∈ L. We then say that T I/O-realizes L.
When I and O are clear from the context, we omit them. In the synthesis problem, we get
as input a safety language L over I and O, say by means of a DLA, and we are asked to
return an I/O-transducer that realizes L or to declare that L is not I/O-realizable.

2.3. Sensing

We study languages over an alphabet Σ = 2P , for a finite set P of signals. A letter σ ∈ Σ

corresponds to a truth assignment to the signals. When we define languages over Σ, we use
predicates on P in order to denote sets of letters. For example, if P = {a, b, c}, then the
expression (True)∗ · a · b · (True)∗ describes all words over 2P that contain a subword
σa · σb with σa ∈ {{a}, {a, b}, {a, c}, {a, b, c}} and σb ∈ {{b}, {a, b}, {b, c}, {a, b, c}}.

Consider an automatonA = 〈2P , Q, q0, δ, α〉. For a state q ∈ Q and a signal p ∈ P , we
say that p is sensed in q if there exists a set S ⊆ P such that δ(q, S \ {p}) 6= δ(q, S ∪{p}).
Intuitively, a signal is sensed in q if knowing its value may affect the destination of at
least one transition from q. We use sensed(q) to denote the set of signals sensed in q. The
sensing cost of a state q ∈ Q is scost(q) = |sensed(q)|. d

Consider a deterministic automaton A over Σ = 2P (and over finite or infinite words).
For a finite run r = q1, . . . , qm of A, we define the sensing cost of r, denoted scost(r), as
1
m

∑m−1
i=0 scost(qi). That is, scost(r) is the average number of sensors that A uses during

r. Now, for a finite word w, we define the sensing cost of w in A, denoted scostA(w),
as the sensing cost of the run of A on w. Finally, the sensing cost of A is the expected
sensing cost of words of length that tends to infinity, where we assume that the letters
in Σ are uniformly distributed. Thus, scost(A) = limm→∞ |Σ|−m

∑
w:|w|=m scostA(w).

Note that the definition applies to automata on both finite and infinite words, and that it
independent of the acceptance condition of A. A-priori, it is not clear that scost(A) is well
defined, i.e., that the limit above always exist. As we shall show, however, the limit does
always exist.

Two DFAs may recognize the same language and have different sensing costs. In fact,
as we demonstrate in Example 1 below, in the case of infinite words two different minimal
automata for the same language may have different sensing costs.

For a language L of finite or infinite words, the sensing cost of L, denoted scost(L) is
the minimal sensing cost required for recognizing L by a deterministic automaton. Thus,
scost(L) = infA:L(A)=L scost(A). For the case of infinite words, we allow A to be a
deterministic automaton of any type. In fact, as we shall see, unlike the case of succinctness,
the sensing cost is independent of the acceptance condition used.

dWe note that, alternatively, one could define the sensing level of states, with slevel(q) =
|sensed(q)|
|P | . Then, for

all states q, we have that slevel(q) ∈ [0, 1]. All our results hold also for this definition, simply by dividing the
sensing cost by |P |.
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Example 1. Let P = {a}. Consider the language L ⊆ (2{a})ω of all words with infinitely
many a and infinitely many ¬a. In the following figure we present two minimal DBAs for L
with different sensing costs.

q0 q1 q2

¬a a
a ¬a

true

s0 s1 s2

¬a aa

¬a

a

¬a

Fig. 1. Two minimal DBAs for L with different sensing costs.

While all the states of the second automaton sense a, thus its sensing cost is 1, the
signal a is not sensed in all the states of the first automaton, thus its sensing cost is strictly
smaller than 1 (to be precise, it is 4

5 , as we shall see in Example 8).

Remark 2. Our study of sensing considers deterministic automata. The notion of sensing
is less natural in the nondeterministic setting. From a conceptual point of view, we want
to capture the number of sensors required for an actual implementation for recognizing
the language. Technically, guesses can reduce the number of required sensors. To see this,
take P = {a} and consider the language L = True∗ · a. A DFA for L needs two states,
both sensing a. An NFA for L can guess the position of the letter before the last one, where
it moves to the only state that senses a. The sensing cost of such an NFA is 0 (for any
reasonable extension of the definition of cost on NFAs).

2.4. Probability, Markov Chains, and Markov Decision Processes

A Markov chainM = 〈S, P 〉 consists of a finite state space S and a stochastic transition
matrix P : S × S → [0, 1]. That is, for all s ∈ S, we have

∑
s′∈S P (s, s′) = 1.

Consider a directed graph G = 〈V,E〉. A strongly connected component (SCC) of G
is a maximal (with respect to containment) set C ⊆ V such that for all x, y ∈ C, there is a
path from x to y. An SCC (or state) is ergodic if no other SCC is reachable from it, and is
transient otherwise.

An automaton A = 〈Σ, Q, q0, δ, α〉 induces a directed graph GA = 〈Q,E〉 in which
〈q, q′〉 ∈ E iff there is a letter σ such that q′ = δ(q, σ). When we talk about the SCCs
of A, we refer to those of GA. Recall that we assume that the letters in Σ are uniformly
distributed, thus A also corresponds to a Markov chain MA in which the probability of a
transition from state q to state q′ is pq,q′ = 1

|Σ| |{σ ∈ Σ : δ(q, σ) = q′}|. Let C be the set of
A’s SCC, and Ce ⊆ C be the set of its ergodic SCC’s.

Consider an ergodic SCC C ∈ Ce. Let PC be the matrix describing the probability of
transitions inC. Thus, the rows and columns of PC are associated with states, and the value
in coordinate q, q′ is pq,q′ . By [9], there is a unique probability vector πC ∈ [0, 1]C such
that πCPC = πC . This vector describes the stationary distribution of C: for all q ∈ C it
holds that πC(q) = limm→∞

ECm(q)
m , where ECm(q) is the average number of occurrences

of q in a run of MA of length m that starts anywhere in C [9]. Thus, intuitively, πC(q) is
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the probability that a long run that starts in C ends in q. In order to extend the distribution
to the entire Markov chain of A, we have to take into account the probability of reaching
each of the ergodic components. The SCC-reachability distribution of A is the function
ρ : C → [0, 1] that maps each ergodic SCC C of A to the probability that MA eventually
reaches C, starting from the initial state. We can now define the limiting distribution π :

Q→ [0, 1], as

π(q) =

{
0 if q is transient,
πC(q)ρ(C) if q is in some C ∈ Ce.

Note that
∑
q∈Q π(q) = 1, and that if P is the matrix describing the transitions of MA and

π is viewed as a vector in [0, 1]Q, then πP = π and in fact π = limn→∞
1
n

∑n
m=0 v

0Pm

where v0 is a vector with 1 in the coordinate corresponding q0 and 0 in the other coordi-
nates [9]. The formulations in [9] imply that the stationary, SCC-rechability, and limiting
distributions can be computed in polynomial time by solving a system of linear equations.

Intuitively, the limiting distribution of state q describes the probability of a run on a
random and long input word to end in q. Formally, we have the following lemma.

Lemma 3. LetEm(q) be the expected number of occurrences of a state q in a run of length
m of MA that starts in q0. Then, π(q) = limm→∞

Em(q)
m .

Proof. Let q ∈ Q, and consider a random infinite run r in MA. If q is transient, then it
is easy to see that limm→∞

1
mEm(q) = 0 = π(q), because with probability 1, the state

q does not appear after some point in r. Otherwise, let C ∈ Ce be the ergodic SCC of q.
The probability that r reaches C is given by ρ(C). By the law of total expectation, and
since q is reachable only if r reaches C, we have that Em(q) = ρ(C)ECm−t where t is the

expected time by which r reaches C. Thus, limm→∞
Em(q)
m = ρ(C) limm→∞

ECm−t
m =

ρ(C) limm→∞
ECm
m = ρ(C)πC(q).

A Markov decision process (MDP) isM = 〈S, s0, (As)s∈S ,P, cost〉 where S is a fi-
nite set of states, s0 ∈ S is an initial state, and As is a finite set of actions that are available
in state s ∈ S. Let A =

⋃
s∈S As. Then, P : S × A × S 9 [0, 1] is a partial transition

probability function, defining for every two states s, s′ ∈ S and action a ∈ As, the proba-
bility of moving from s to s′ when action a is taken. Accordingly,

∑
s′∈S P(s, a, s′) = 1.

Finally, cost : S × A 9 N is a partial cost function, assigning each state s and action
a ∈ As, the cost of taking action a in state s.

An MDP can be thought of as a game between a player who chooses the actions and
nature, which acts stochastically according to the transition probabilities.

A policy for an MDPM is a function f : S∗ × S → A that outputs an action given
the history of the states, such that for s0, . . . , sn we have f(s0, . . . , sn) ∈ Asn . Poli-
cies correspond to the strategies of the player. The cost of a policy f is the expected
average cost of a random walk in M in which the player proceeds according to f . For-
mally, for m ∈ N and for a sequence of states τ = s0, . . . , sm−1, we define Pf (τ) =∏m−1
i=1 P(si−1, f(s0 · · · si−1), si). Next, let costm(f, τ) = 1

m

∑m
i=1 cost(si, f(s1 · · · si))

and we define the cost of f as cost(f) = lim infm→∞
1
m

∑
τ :|τ |=m costm(f, τ) · Pf (τ).
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A policy is memoryless if it depends only on the current state. We can describe a
memoryless policy by f : S → A. A memoryless policy f induces a Markov chain
Mf = 〈S, Pf 〉 with Pf (s, s′) = P(s, f(s), s′). Let π be the limiting distribution of
Mf . It is not hard to prove (see e.g., [19]) that cost(f) =

∑
s∈S πscost(s, f(s)). Let

cost(M) = inf{cost(f) : f is a policy forM}. That is, cost(M) is the expected cost of a
game played onM in which the player uses an optimal policy.

Theorem 4. Consider an MDPM. Then, cost(M) can be attained by a memoryless pol-
icy, which can be computed in polynomial time.

2.5. Computing The Sensing Cost of an Automaton

Consider a deterministic automaton A = 〈2P , Q, δ, q0, α〉. The definition of scost(A) by
means of the expected sensing cost of words of length that tends to infinity does not suggest
an algorithm for computing it. In this section we show that the definition coincides with a
definition that sums the costs of the states in A, weighted according to the limiting distri-
bution, and show that this implies a polynomial-time algorithm for computing scost(A).
This also shows that the cost is well-defined for all automata.

Theorem 5. For all automata A, we have scost(A) =
∑
q∈Q π(q) · scost(q), where π is

the limiting distribution of A.

Proof. By Lemma 3, we have π(q) = limm→∞
Em(q)
m , whereEm(q) is the expected num-

ber of occurrences of q in a random m-step run. This can be restated in our case as π(q) =

limm→∞
1

m|Σ|m
∑
w:|w|=mOccw(q), where Occw(q) is the number of occurrences of q in

the run of A on w. By definition, scost(A) = limm→∞ |Σ|−m
∑
w:|w|=m scostA(w), and

also scostA(w) =
∑
q∈Q scost(q) ·Occw(q). From this, we get

scost(A) = lim
m→∞

|Σ|−m
∑

w:|w|=m

∑
q∈Q

scost(q) ·Occw(q)

=
∑
q∈Q

scost(q) · lim
m→∞

|Σ|−m
∑

w:|w|=m

Occw(q) =
∑
q∈Q

scost(q) · π(q).

Remark 6. It is not hard to see that ifA is strongly connected, then π is the unique station-
ary distribution of MA and is independent of the initial state of A. Accordingly, scost(A)

is also independent of A’s initial state in this special case.

Theorem 7. Given an automaton A, the sensing cost scost(A) can be calculated in poly-
nomial time.

Proof. By Theorem 5, we have that scost(A) =
∑
q∈Q π(q) · scost(q), where π is the

limiting distribution ofA. By the definition of π, we have that π(q) = πC(q)ρ(C), if q is in
some C ∈ Ce. Otherwise, π(q) = 0. Hence, the computational bottleneck is the calculation
of the SCC-reachability distribution ρ : C → [0, 1] and the stationary distributions πC for
every C ∈ Ce. It is well known that both can be computed in polynomial time via classic
algorithms on matrices. For completeness, we give the details here.
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The stationary distribution πC of each ergodic SCC C can be computed in polynomial
time by solving a system of linear equations. We show that the SCC-reachability distribu-
tion ρ : C → [0, 1] can also be calculated in polynomial time. First, if the initial state q0

is in an ergodic SCC, the result is trivial. Otherwise, we proceed as follows. We associate
with A the Markov chain M ′A, in which we contract each ergodic SCC of A to a single
state. That is, M ′A is obtained from MA by replacing each C ∈ Ce by a single state qC .
Notice that M ′A is an absorbing Markov chain, thus it reaches a sink state with probability
1. Indeed, the probability of reaching an ergodic SCC in MA is 1, and every SCC in MA
becomes a sink state in M ′A.

By indexing the rows and columns in the transition matrix of M ′A such that transient

states come before ergodic states, we can put the matrix in a normal form
(
T E

0 I

)
, where

T describes the transitions between transient states, E from transient to ergodic states, and
I is the identity matrix of size |Ce|. Note that, indeed, there are no transitions from ergodic
states to transient ones, which explains the 0 matrix in the bottom left, and that I captures
the fact the ergodic states are sinks. By [9], the entry at coordinates (qt, qC) in the matrix
B = (I−T )−1E is the probability of reaching the sink qC starting from the transient state
qt. Therefore, for every C ∈ Ce, we have that ρ(C) = B(q0,qC).

Example 8. Recall the first DBA described in Example 1. Its limiting distribution is
π(q0) = π(q1) = 2

5 , π(q2) = 1
5 . Accordingly, its cost is 1 · 2

5 + 1 · 2
5 + 0 · 1

5 = 4
5 .

3. The Sensing Cost of Regular Languages of Finite Words

In this section we study the setting of finite words. We show that there, sensing minimiza-
tion goes with size minimization, which makes things clean and simple, as size minimiza-
tion for DFAs is a feasible and well-studied problem. We also study theoretical properties
of sensing. In Section 3.1, we show that, surprisingly, abstraction of signals may actually
increase the sensing cost of a language, and in Section 3.2 we study the effect of classical
operations on regular languages on their sensing cost.

Consider a regular language L ⊆ Σ∗, with Σ = 2P . Recall that the residual automaton
RL = 〈Σ, 〈L〉,∆L, [ε], α〉 is the minimal-size DFA that recognizes L. We claim that RL
also minimizes the sensing cost of L.

Lemma 9. Consider a regular language L ⊆ Σ∗. For every DFA A with L(A) = L, we
have that scost(A) ≥ scost(RL).

Proof. Consider a word u ∈ Σ∗. After reading u, the DFA RL reaches the state [u] and
the DFA A reaches a state q with L(Aq) = u−1L. Indeed, otherwise we can point to a
word with prefix u that is accepted only in one of the DFAs. We claim that for every state
q ∈ Q such that L(Aq) = u−1L, it holds that sensed([u]) ⊆ sensed(q). To see this,
consider a signal p ∈ sensed([u]). By definition, there exists a set S ⊆ P and words u1

and u2 such that ([u], S \ {p}, [u1]) ∈ ∆L, ([u], S ∪ {p}, [u2]) ∈ ∆L, yet [u1] 6= [u2].
By the definition of RL, there exists z ∈ (2P )∗ such that, w.l.o.g, z ∈ u−1

1 L \ u−1
2 L.
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Hence, as L(Aq) = u−1L, we have that Aq accepts (S \ {p}) · z and rejects (S ∪ {p}) · z.
Let δA be the transition function of A. By the above, δA(q, S \ {p}) 6= δA(q, S ∪ {p}).
Therefore, p ∈ sensed(q), and we are done. Now, sensed([u]) ⊆ sensed(q) implies that
scost(q) ≥ scost([u]).

Consider a word w1 · · ·wm ∈ Σ∗. Let r = r0, . . . , rm and [u0], . . . , [um] be the runs
of A and RL on w, respectively. Note that for all i ≥ 0, we have ui = w1 · w2 · · ·wi.
For all i ≥ 0, we have that L(Ari) = u−1

i L, implying that then scost(ri) ≥ scost([ui]).
Hence, scostA(w) ≥ scostRL(w). Since this holds for every word in Σ∗, it follows that
scost(A) ≥ scost(RL).

Since L(RL) = L, then scost(L) ≤ scost(RL). This, together with Lemma 9, enables
us to conclude the following.

Theorem 10. For every regular language L ⊆ Σ∗, we have scost(L) = scost(RL).

Finally, since DFAs can be size-minimized in polynomial time, Theorems 7 and 10
imply we can efficiently minimize also the sensing cost of a DFA and calculate the sensing
cost of its language:

Theorem 11. Given a DFA A, the problem of computing scost(L(A)) can be solved in
polynomial time.

3.1. On Monotonicity of Sensing

The example in Remark 2 suggests that there is a trade-off between guessing and sensing.
Consider a DFA A = 〈Σ, Q, q0, δ, α〉, with Σ = 2P . For a state q ∈ Q and a signal
p ∈ P , let Aq↓p be the NFA obtained from A by ignoring p in q. Thus, in state q, the
NFAAq↓p guesses the value of p and proceeds to all the successors that are reachable with
some value. Note that the guess introduces nondeterminism; Since we consider sensing in
deterministic automata, we formally define Aq↓p as the result of the determinization of the
NFA above. We thus have Aq↓p = 〈Σ, 2Q, {q0}, δ′, α′〉, where for every state T ∈ 2Q and
letter S ∈ 2P , we define δ′(T, S) =

⋃
t∈T δ(t, S) if q 6∈ T , and δ′(T, S) = δ(q, S \ {p})∪

δ(q, S ∪ {p}) ∪ ⋃t∈T\{q} δ(t, S) if q ∈ T . Also, a state T ⊆ Q is in α′ iff T ∩ α 6= ∅.
It is easy to see that L(A) ⊆ L(Aq↓p). Since Aq↓p is obtained from A by giving up some
of its sensing, it is tempting to think that scost(L(Aq↓p)) ≤ scost(L(A)). As we now
show, however, sensing is not monotone. For two languages L and L′, we say that L′ is an
abstraction of L if there is a DFA A such that L(A) = L and there is a state q and a signal
p of A such that L′ = L(Aq↓p).

Theorem 12. Sensing is not monotone. That is, there is a language L and an abstraction
L′ of L such that scost(L) ≤ scost(L′).

Proof. Let P = {a, b, c}. Consider the language L = a · True∗ · b + (¬a) · True∗ · c. It
is not hard to see that scost(L) = 1. Indeed, a DFA for L has to sense a in its initial state
and then has to always sense either b (in case a appears in the first letter) or c (otherwise).
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Giving up the sensing of a in the initial state of a DFA for L we end up with the
language L′ = (True)+ · (b ∨ c). It is not hard to see that scost(L′) = 2. Indeed, every
DFA for L′ has to almost always sense both b and c.

We conclude that replacing a sensor with non-determinism may actually result in a
language for which we need more sensors. This corresponds to the known fact that ab-
straction of automata may result in bigger (in fact, exponentially bigger) DFAs [2]. Also,
while the above assumes an abstraction that over-approximates the original language, a
dual argument could show that under-approximating the language (that is, defining Aq↓p
as a universal automaton) may result in a language with higher sensing cost.

3.2. Operations on Regular Languages and Their Sensing Cost

It is well known that regular languages are closed under union, concatenation, and comple-
mentation. In this section we study the effect of these operations on the sensing cost. We
start with complementation. For every regular language L, a DFA for comp(L) = Σ∗ \ L
can be obtained from a DFA for L by complementing the set of accepting states. In partic-
ular, this holds forRL, implying the following.

Lemma 13. For every regular language L, we have that scost(L) = scost(comp(L)).

Next, we consider the union of two regular languages.

Lemma 14. For every pair of regular languages L1, L2 ⊆ (2P )∗, we have scost(L1 ∪
L2) ≤ scost(L1) + scost(L2). Moreover, this bound is tight.

Proof. Consider the minimal DFAs A1 = 〈2P , Q1, δ1, q1
0 , α

1〉 and A2 =

〈2P , Q2, δ2, q2
0 , α

2〉 for L1 and L2, respectively. Let B = 〈2P , Q1 ×Q2, δ, (q1
0 , q

2
0), (α1 ×

Q2)∪(Q1×α2)〉 be their product DFA. Note that L(B) = L1∪L2. We claim that for every
state 〈q, s〉 ∈ Q1 × Q2, we have that sensed(〈q, s〉) ⊆ sensed(q) ∪ sensed(s). Indeed,
if p /∈ sensed(q) ∪ sensed(s), then for every set S ⊆ P \ {p}, it holds that δ1(q, S) =

δ1(q, S ∪ {p}) and δ2(s, S) = δ2(s, S ∪ {p}). Thus, δ(〈q, s〉, S) = δ(〈q, s〉, S ∪ {p}), so
p /∈ sensed〈q, s〉. We thus have that scost(〈q, s〉) ≤ scost(q) + scost(s).

It follows that for every word w ∈ (2I∪O)∗, we have that scostB(w) ≤ scostA1
(w) +

scostA2(w). Indeed, in every state in the run of B on w, the sensing is at most the sum of
the sensings in the corresponding states in the runs of A1 and A2 on w. Since this is true
for every word in Σ∗, then taking the limit of the average cost yields the result.

As for tightness, a trivial example when L1 is ∅. Then, scost(L1) = 0 and scost(L1 ∪
L2) = scost(L2) = scost(L1) + scost(L2). For a nontrivial example, take P =

{p1, p2, . . . , p2n}, and let L1 = True∗ · (∨1≤i≤n p2i−1) and L2 = True∗ · (∨1≤i≤n p2i).
Note that scost(L1) = scost(L2) = n. Indeed, a DFA for L1 has to always sense
p1, p3, . . . , p2n−1 in order to verify that the last letter is one of them, and similarly for
L2 and p2, p4, . . . , p2n. Also, L1 ∪ L2 = True∗ · (∨p∈P p), which has sensing cost 2n.

The following lemma shows that in general, scost(L1 ∪ L2) cannot be bounded from
below using scost(L1) and scost(L2).
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Lemma 15. For every set P of signals, there are languages L1, L2 ⊆ (2P )∗ with
scost(L1) = scost(L2) = |P | but scost(L1 ∪ L2) = 0.

Proof. Given P , let L1 = True∗ · (∨p∈P p) and L2 = True∗ · (∧p∈P ¬p). It is not hard to
see that scost(L1) = scost(L2) = |P |. Indeed, DFAs for L1 and L2 have to always sense
all signals. On the other hand, L1 ∪ L2 = True∗, and thus scost(L1 ∪ L2) = 0.

Note that since sensing cost is preserved by complementation, the above bound
on union of languages can be lifted to intersection. Indeed, scost(L1 ∩ L2) =

scost(comp(L1 ∩ L2)) = scost(comp(L1) ∪ comp(L2)) ≤ scost(comp(L1)) +

scost(comp(L2)) = scost(L1) + scost(L2). Overall, we obtain the same bound as for
union, that is scost(L1 ∩ L2) ≤ scost(L1) + scost(L2).

We now consider the concatenation of two languages. The following lemma shows that
the sensing level may increase from 0 to |P | when concatenating languages, or conversely
may decrease from |P | to 0. This indicates that there is in general no way to infer an upper
or lower bound on bound on scost(L1 · L2) from scost(L1) and scost(L2).

Lemma 16.

(1) There are languages L1, L2 ⊆ (2P )∗ such that scost(L1) = scost(L2) = 0, yet
scost(L1 · L2) = |P |.

(2) There are languages L1, L2 ⊆ (2P )∗ such that scost(L1) = scost(L2) = |P |,
yet scost(L1 · L2) = 0.

Proof. Given P , let ϕ =
∨
p∈P p. Thus, ϕ stands for all letters in which one of the signals

in P holds.
For the first claim, consider the languages L1 = True∗ and L2 = ϕ. That is, L2

contains all words of length 1 whose single letter includes one of the signals in P . It is not
hard to see that scost(L1) = scost(L2) = 0. Indeed, a DFA for L1 consists of a single
accepting sink with no sensing, and a DFA for L2 has a single ergodic component, which
is a rejecting sink with no sensing. On the other hand, L1 · L2 = True∗ · ϕ, and has to
always sense all signals.

For the second claim, consider the languages L1 = ((¬ϕ)∗ · ϕ · (¬ϕ)∗ · ϕ)∗ · (¬ϕ)∗

of words having an even number of letters in ϕ, and L2 = (¬ϕ)∗ + (¬ϕ)∗ϕ · L1 of words
having either no ϕ or an odd number of letters is ϕ’s. We have scost(L1) = scost(L2) =

|P |, as in both cases, the DFA must read each letter to keep track of the parity of the number
of letters in ϕ. In the case of L2, the ergodic component verifies that the number of letters
in ϕ is odd, as with probability 1, a letter in ϕ occurs. We show that L1 ·L2 = Σ∗. Indeed,
L1 · L2 ⊇ (L1 · {ε}) ∪ ({ε} · L2) = L1 ∪ L2. Since any word has either an even number
of letters in ϕ or an odd number of such letters, we have that L1 ∪ L2 = (2P )∗. Thus
L1 · L2 = (2P )∗, and so scost(L1 · L2) = 0.
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4. The Sensing Cost of ω-Regular Languages

For the case of finite words, we have a very clean picture: minimizing the state space of
a DFA also minimizes its sensing cost. In this section we study the case of infinite words.
There, the picture is much more complicated. In Example 1 we saw that different minimal
DBAs may have a different sensing cost. We start this section by showing that even for
languages that have a single minimal DBA, the sensing cost may not be attained by this
minimal DBA, and in fact it may be attained only as a limit of a sequence of DBAs.

Example 17. Let P = {p}, and consider the language L of all words w1 · w2 · · · such
that wi = {p} for infinitely many i’s. Thus, L = (True∗ · p)ω . A minimal DBA for L has
two states. The minimal sensing cost for a two-state DBA for L is 2

3 (the classical two-
state DBA for L senses p in both states and thus has sensing cost 1. By taking A1 in the
sequence we shall soon define we can recognize L by a two-state DBA with sensing cost
2
3 ). Consider the sequence of DBAs Am appearing in Figure 2. The DBA Am recognizes
(True≥m · p)ω , which is equivalent to L, yet enables a “lazy” sensing of p. Formally,
the stationary distribution π for Am is such that π(qi) = 1

m+1 for 0 ≤ i ≤ m − 1

and π(qm) = 2
m+1 . In the states q0, . . . , qm−1 the sensing cost is 0 and in qm it is 1.

Accordingly, scost(Am) = 2
m+1 , which tends to 0 as m tends to infinity.

q0 q1 qm−1 qm
true true ¬p

p

Fig. 2. The DBAAm.

Observe that the residual automaton RL for the language L = (True∗ · p)ω discussed
in Example 17 has a single state, and therefore its sensing cost is 0, which happens to be
the sensing cost of L. As we show in Section 4.1, this is not a coincidence, and in fact
the residual automaton can be used to characterize the sensing cost even for ω-regular
languages.

4.1. Characterizing scost(L) by the residual automaton for L

In this section we state and prove our main result, which characterizes the sensing cost of
an ω-regular language by means of the residual automaton for the language:

Theorem 18. For every ω-regular language L ⊆ Σω , we have scost(L) = scost(RL).

The proof is described over the following section. The first direction, showing that
scost(L) ≥ scost(RL), is proved by similar considerations to those used in the proof
of Lemma 9 for the setting of finite words.

Lemma 19. For every ω-regular language L ⊆ Σω , we have scost(L) ≥ scost(RL).
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Proof. We prove that for every DPA A with L(A) = L, we have that scost(A) ≥
scost(RL). Consider a word w ∈ Σω and a prefix u ∈ Σ∗ of w. After reading u, the
DPA RL reaches the state [u] and the DPA A reaches a state q with L(Aq) = u−1L. As
in the case of finite words, for every state q ∈ Q such that L(Aq) = u−1L, it holds that
sensed([u]) ⊆ sensed(q), implying that scost(q) ≥ scost([u]). Now, since this holds for
all prefixes u of w, it follows that scostA(w) ≥ scostRL(w). Finally, since the latter holds
for every word w ∈ Σω , it follows that scost(A) ≥ scost(RL).

Note that the arguments in the proof are independent of the acceptance condition of A
and apply also to stronger acceptance conditions, such as the Muller acceptance condition.

Our main effort is to prove that scost(L) ≤ scost(RL). To show this, we construct,
given a DPA A such that L(A) = L, a sequence (Bn)n≥1 of DPAs such that L(Bn) = L

for every n ≥ 1, and limn→∞ scost(Bn) = scost(RL).
Broadly, the idea behind the construction is as follows. When reading a word, the DPA

Bn mimics the operation of A for a certain duration. At some point, it proceeds to read n
letters in a component that mimics RL, without effecting the acceptance of the word. It
then goes back to mimicking A, and so on. As n grows, Bn spends more time mimicking
RL, and hence its cost tends to scost(RL). However, there are now two contradicting goals
to achieve: on the one hand, since RL cannot be used to recognize L, we must ensure that
Bn retains enough information, and spends enough time mimickingA, in order to correctly
accept or reject the word. On the other hand, we must bound the expected duration that Bn
spends mimicking A, otherwise the cost does not tend to scost(RL). Finding the balance
between these two requires a delicate construction, and a careful analysis of the structure
of DPAs.

A key idea in this construction is that after some time spent in RL, we “lost track” of
where we are exactly in A. In order to regain some information when mimicking A, we
wait until an exact sequence of parity ranks (noted uk in the proof) occurs, that guarantees
that in the actual run of A, a maximal index occured. This is possible thanks to a structural
characterization of rank-optimal DPAs inspired from [17]. Since the length of uk does
not depend on n, with probability 1 this precise sequence uk will be witnessed, and the
automaton Bn will switch back to itsRL component.

We note that since the DPAs Bn have the same acceptance condition as A, there is
no trade-off between sensing cost and acceptance condition. More precisely, if L can be
recognized by a DPA with parity ranks [i, j] (in particular, if L is DBA-recognizable), then
the sensing cost for L(A) can be obtained by a DPA with parity ranks [i, j].

Definition 20. A DPA A with ranks [i, j] is canonical if

• it is strongly connected
• it is impossible to recognize L(A) with a DPA A′ 6= A with ranks [i, j] obtained

from A by increasing the ranks of some states.

Lemma 21. If L is recognized by a strongly connected DPA, then it is recognized by a
canonical one, using possibly less ranks.
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Proof. LetA be a strongly connected DPA for L, with statesQ and ranks [i, j]. A rank can
be assigned to each state of Q via a ranking vector v ∈ [i, j]Q. Let Av be the automaton
A where ranks are defined by the vector v. Let V = {v ∈ [i, j]Q | L(Av) = L}, which
is non-empty since A = Av for some v. Let vm be a component-wise maximal element
of V (there can be several choices for vm). The automaton Avm is a canonical DPA for L.
Notice that Avm possibly uses less ranks than A.

We first assume that L is recognized by a strongly connected DPA. We will later show
how to drop this assumption.

By Lemma 21, letA = 〈Σ, Q, q0,∆, αA〉 be a canonical DPA forL. We can assume the
lower rank ofA is 0 or 1, by shifting ranks if necessary. Moreover, if the lower rank is 1, we
consider the complement DPA, for which the lower rank is 0, and which is still canonical.
Since canonical DPAs can be complemented by dualizing the acceptance condition, their
sensing cost is preserved under complementation, so reasoning about the complemented
DPA is sound. Thus from now on, we assume that A has ranks [0, k]. For 0 ≤ i ≤ k, a
cycle in A is called an i-loop if the maximal rank along the cycle is i. For 0 ≤ i ≤ j ≤ k,
an [i, j]-flower is a state q` ∈ Q such that for every i ≤ r ≤ j, there is an r-loop that goes
through q`.

The following is an adaptation of a result from [17] to canonical DPAs:

Lemma 22. Consider a canonical DPA A = 〈Σ, Q, q0,∆, αA〉 with ranks [0, k]. Then,
any state q` of rank 0 is a [0, k]-flower.

Proof. Let q be a state of rank 0, and assume q is not a [0, k]-flower. Since A is strongly
connected, there must be a k-loop containing q. If there is no 0-loop containing q, then
we can replace the rank of q by 1 in A without changing the accepted language. This
contradicts the fact that A is canonical. This means there is a rank i ∈ [1, k − 1] such that
there is no i-loop containing q.

Let G<i be the graph of A restricted to states with rank in [0, i − 1]. Let Cq be the
strongly connected component of q in Gi. Since there is a 0-loop containing q, Cq is not
empty. We prove that adding 2 to the ranks of states in Cq does not change the language
of A, leading to a contradiction with the fact that A is canonical. Indeed, let A′ be the
automaton where ranks of states of Cq are lifted up by 2, and consider a run ρ′ of A′ and
the corresponding run ρ of A. We show that ρ′ is accepting if and only if ρ is accepting. If
ρ does not contain infinitely many states from Cq , or eventually stays in Cq , then the result
is trivial. It remains to treat the case where ρ visits Cq as well as its complement infinitely
many times. Let π be a path in A from Cq to Cq containing a state not in Cq . Then π can
be extended to a loop containing q by appending a prefix and a suffix in Cq , since Cq is
strongly connected. The maximal rank of π is at least i + 1, since it cannot be < i (that
would imply π is contained in Cq) and it cannot be i (that would imply that π is an i-loop
containing q). So any path leaving Cq and going back to it must contain a rank at least i+1.
This implies that ρ contains infinitely many ranks above i+ 1, and therefore ρ is accepting
if and only if ρ′ is accepting, since only ranks below i + 1 are modified. This shows that
L(A′) = L(A), contradicting the fact that A is canonical.
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Let Ω = [0, k], and let A be as in Lemma 22, and q` be a Ω-flower in A. For a word
w ∈ Σ∗, let ρ = s1, s1, ..., sn be the run of A on w. If ρ ends in q`, we define the
q`-loop-abstraction of w to be the rank-word abs(w) ∈ Ω∗ of maximal ranks between
successive visits to q`. Formally, let w = y0 · y1 · · · yt be a partition of w such that A
visits the state q` after reading the prefix y0 · · · yj , for all 0 ≤ j ≤ t, and does not visit q`

in other positions. Then, abs(yi), for 0 ≤ i ≤ t, is the maximal rank read along yi, and
abs(w) = abs(y0) · abs(y1) · · · abs(yt). Recall thatRL = 〈Σ, 〈L〉,∆L, [ε], α〉, where 〈L〉
are the equivalence classes of the right-congruence relation on L, thus each state [u] ∈ 〈L〉
is associated with the language u−1L of words w such that uw ∈ L. We define a function
ϕ : Q → 〈L〉 that maps states of A to languages in 〈L〉 by ϕ(q) = L(Aq). Observe that
ϕ is onto. We define a function γ : 〈L〉 → Q that maps languages in 〈L〉 to states of A
by arbitrarily choosing for every language u−1L ∈ 〈L〉 a state in ϕ−1(u−1L) (clearly γ is
independent of u, and is therefore well-defined).

We define a sequence of words u0, . . . , uk ∈ Ω∗ as follows. The definition proceeds
by an induction. Let M = |Q| + 1. First, u0 = 0M . Then, for 0 < i ≤ k, we have
ui = (i · ui−1)M−1 · i. For example, if |Q| = 2, then u0 = 000, u1 = 100010001,
u2 = 210001000121000100012, and so on. Let P be a DFA that accepts a (finite) word
w ∈ Σ∗ iff the run ofA on w ends in q` and uk is a suffix of abs(w), for the word uk ∈ Ω∗

defined above.
We now turn to describe how to construct P . Intuitively, this is done by combining a

DFA over that alphabet Ω that recognizes Ω∗ · uk with a DFA with state space Q× Ω that
records the highest rank visited between successive visits to q` and thus abstracts words in
Σ∗.

LetHk = 〈Ω, Q′, q′0,∆′, α′〉 be the minimal DFA that recognizes the language Ω∗ ·uk.
We can defineHk so that α′ contains a single state q′acc . Indeed, there is a single accepting
Myhill-Nerode class of the language Ω∗ · uk.

LetH be the DFA with state space Q×Ω and alphabet Σ that maintains in its state the
highest rank seen since the last occurrence of q` (or since the beginning of the word, if no
q` has been seen) in the run ofA on the word. Thus,H is in state 〈q, i〉 iff the current state
of A is q, and the highest rank that was visited by A since the last visit to q` is i. Observe
that simulating H when A is in an r-loop that started from q`, means that the next visit to
q` will makeH reach the state 〈q`, r〉.

Formally,H = 〈Σ, Q× Ω, 〈q0, 0〉,∆H, Q× Ω〉, where ∆H is defined as follows.

• For every state 〈q, i〉 where q 6= q`, and for every σ ∈ Σ, we have
〈〈q, i〉, σ, 〈s,max {i, i′}〉〉 ∈ ∆H where s is such that 〈q, σ, s〉 ∈ ∆, and i′ =

αA(s).
• For a state 〈q`, i〉 and for σ ∈ Σ, we have 〈〈q`, i〉, σ, 〈s, i′〉〉 ∈ ∆H where s is

such that 〈q`, σ, s〉 ∈ ∆, and i′ = αA(s).

We obtain P by composing H with Hk as follows. In every step of a run of A, the
DFA P advances in the DFA H, while the DFA Hk only advances when we visit q`, and
it advances according to the highest rank stored inH.
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Formally, P = 〈Σ, QP , t0,∆P , {tacc}〉, where QP = Q × Ω × Q′, t0 = 〈q0, 0, q
′
0〉,

tacc = 〈q`, k, q
′
acc〉 and the transition relation is defined as follows. For every state

〈q, i, s〉 ∈ QP and letter σ ∈ Σ, we have 〈〈q, i, s〉, σ, 〈q′, i′, s′〉〉 ∈ ∆P , where 〈q′, i′〉
is such that 〈〈q, i〉, σ, 〈q′, i′〉〉 ∈ ∆H, and s′ is such that 〈s, i′, s′〉 ∈ ∆′ if q′ = q`, while
s′ = s if q 6= q`.

We can now turn to the construction of the DPAs Bn. Recall that A =

〈Σ, Q, q0,∆, αA〉, and let P = 〈Σ, QP , t0,∆P , {tacc}〉. For n ≥ 1, we define Bn =

〈Σ, Qn, 〈q0, t0〉,∆n, αn〉 as follows. The states of Bn are Qn = (〈L〉 × {1, . . . , n}) ∪
(Q × (QP \ {tacc})), where tacc is the unique accepting state of P . We refer to the two
components in the union as the RL-component and the A-component, respectively. The
transitions of Bn are defined as follows.

• Inside the RL-component: for every transition 〈[u], a, [u′]〉 ∈ ∆L and i ∈
{1, . . . , n− 1}, there is a transition 〈([u], i), a, ([u′], i+ 1)〉 ∈ ∆n.
• From theRL-component to the A-component: for every transition 〈[u], a, [u′]〉 ∈

∆L, there is a transition 〈([u], n), a, (γ([u′]), t0)〉 ∈ ∆n.
• Inside theA-component: for all transitions 〈q, a, q′〉 ∈ ∆ and 〈t, a, t′〉 ∈ ∆P with
t′ 6= tacc , there is a transition 〈(q, t), a, (q′, t′)〉 ∈ ∆n.

• From the A-component to the RL-component: for all transitions 〈q, a, q′〉 ∈ ∆

and 〈t, a, tacc〉 ∈ ∆P , there is a transition 〈(q, t), a, (ϕ(q′), 1)〉 ∈ ∆n.

The acceptance condition of Bn is induced by that of A. Formally αn(q, t) = αA(q),
for states (q, t) ∈ Q×QP , and αn([u], i) = 0 for states ([u], i) ∈ 〈L〉 × {1, . . . , n}.

RL, 1 RL, 2 RL, 3 RL, nD × P n

Fig. 3. The DPA Bn.

The idea behind the construction of Bn is as follows. The automaton Bn stays in RL
for n steps, then proceeds to a state in A with the correct residual language, and simulates
A until the ranks corresponding to the word uk have been seen. It then goes back to RL,
by projecting the current state of A onto its residual in 〈L〉. The bigger n is, the more time
a run spends in the RL-component, making RL the more dominant factor in the sensing
cost of Bn. As n tends to infinity, the sensing cost of Bn tends to that ofRL. The technical
challenge is to define P in such a way so that even though the run spends less time in theA
component, we can count on the ranks visited during this short time in order to determine
whether the run is accepting. We are now going to formalize this intuition, and we start with
the most challenging part of the proof, namely the equivalence of Bn and A. The proof is
decomposed into the three Lemmas 23, 24, and 25. Lemma 23 shows that Bn correctly
keeps track of the residual language. Then, Lemmas 24 and 25 show that Bn correctly
recognizes L. Technically, the latter lemmas are a case split according to whether or not
theRL component is visited infinitely often.
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Lemma 23. Consider a word u ∈ Σ∗ such that the run of Bn on u reaches the A-
component in state 〈q, t〉. Then, L(Aq) = u−1L.

Proof. We prove a stronger claim, namely that if the run of Bn on u ends in the RL-
component in a state 〈s, i〉, then s = [u], and if the run ends in the A-component in a state
〈q, t〉, then L(Aq) = u−1L. The proof proceeds by induction on |u| as follows.

For u = ε, the claim is trivial, as Bn starts in 〈q0, t0〉. Consider the word u · σ for
u ∈ Σ∗ and σ ∈ Σ. By the induction hypothesis, if the run of Bn on u ends in an RL
component in state 〈s, i〉, then s = [u]. If i < n, then, by the definition of RL, the next
state is 〈[u · σ], i + 1〉, we are done. If i = n then the next state is 〈γ([u · σ]), t0〉. By the
definition of γ, we have L(Aγ([u·σ])) = (u · σ)−1L, so we are done.

We continue to the case the run of Bn on u ends in the A-component. If the run ends
in a state 〈p, t〉 such that 〈t, σ, tacc〉 /∈ ∆P , then, by the induction hypothesis, we have
that L(Ap) = u−1L. Reading σ, we move to a state 〈p′, t′〉 such that 〈p, σ, p′〉 ∈ ∆, thus
L(Ap′) = (u · σ)−1L, and we are done. Otherwise, 〈t, σ, tacc〉 ∈ ∆P and the next state of
Bn is 〈ϕ(p′), 1〉. By the definition of ϕ, we have ϕ(p′) = [u · σ], and we are done.

Lemma 24. If the run of Bn on a word w ∈ Σω visits the RL-component only finitely
many times, then w ∈ L iff w ∈ L(Bn).

Proof. Let u ∈ Σ∗ be a prefix of w such that the run of Bn on w stays forever in the
A-component after reading u. Let (q, t) ∈ Qn be the state reached by Bn after reading
u. By Lemma 23, we have L(Aq) = u−1L. Since the run of Bn from (q, t) stays in the
A-components where it simulates the run of A from q, then Aq accepts the suffix w|u| iff
B(q,t)
n accepts w|u|. It follows that w ∈ L iff w ∈ L(Bn).

The complicated case is when the run of Bn on w does visit the RL-component in-
finitely many times. This is where the special structure of P guarantees that the sparse
visits in the A-component are sufficient for determining acceptance.

Lemma 25. If the run of Bn on a word w ∈ Σω visits the RL-component infinitely many
times, then w ∈ L iff w ∈ L(Bn).

Proof. Let τ = s1, s2, s3, . . . be the run of Bn on w and let ρ = q1, q2, q3 . . . be the run
of A on w. We denote by τ [i, j] the infix si, ..., sj of τ . We also extend αA to (infixes of)
runs by defining αA(τ [i, j]) = αA(si), ..., αA(sj). For a rank-word u ∈ Ω∗, we say that
an infix τ [i, j] is a u-infix if αA(τ [i, j]) = u.

If v = τ [i, j], for some 0 ≤ i ≤ j, is a part of a run of A that consists of loops around
q`, we define the loop type of v to be the word in Ω∗ that describes the highest rank of each
simple loop around q` in v. An infix of τ whose loop type is ui for some 0 ≤ i ≤ k is
called a ui-loop-infix.

By our assumption, τ contains infinitely many uk-infixes. Indeed, by the definition of
P , otherwise τ gets trapped in the A-component. We proceed by establishing a connection
between ui-loop-infixes of τ and the corresponding infixes of ρ, for all 0 ≤ i ≤ k.
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Let i ∈ {0, . . . , k}, and consider a ui-loop-infix, By the definition of ui, such a ui-
loop-infix consists of a sequence of M = |Q| + 1 i-loops in τ , with loops of lower ranks
between them. We can writew = xvw′, where v = w[c, d] is the sub word that corresponds
to the ui-loop-infix. Let u′i = αA(ρ[c, d]) be the ranks of ρ in its part that corresponds to v.

By our choice of M , we can find two indices c ≤ j < l ≤ d such that the pairs
〈(qj , t), q′j〉 and 〈(ql, t′), q′l〉 reached by (τ, ρ) in indices j and l, respectively, satisfy qj =

ql = q` and q′j = q′l. Additionally, being a part of the run on a ui-loop-infix, the highest
rank seen between qj and ql in τ is i. We write v = v1v2v3, where v1 = v[1, j], v2 =

v[j + 1, l], and v3 = v[l + 1, |v|]. Thus, the loop type of v2 is in (iui−1)+i, with the
convention u−1 = ε.

Consider the runs µ and η of Aqj and of Aq′j on vω2 , respectively. These runs are loops
labeled by v2, where the highest rank in µ is i. By Lemma 23, L(Aqj ) = L(Aq′j ), so the
highest rank in η must have same parity (odd or even) as i.

Thus, we showed that for every i ∈ {0, ..., k}, and for every ui-loop-infix v of τ , there
is an infix of v with loop-type in (iui−1)+i, such that the infix of ρ corresponding to v has
highest rank of same parity as i.

We want to show that rank k is witnessed on ρ during every uk-infix of τ . Assume by
way of contradiction that this is not the case. This means that there is some uk-infix v′ in
τ such that all ranks visited in ρ along v′ are at most k − 2. Indeed, since the highest rank
has to be of the same parity as k, which has the same parity as k, it cannot be k− 1. By the
same argument, within v′ there is an infix v′′ of uk−1 of the form ((k − 1)(uk−2))+(k−1)

in which the highest rank in ρ is of the same parity as k − 1. As v′′ is also an infix of v′,
the highest rank in ρ along v′′ is at most k − 2. Thus, the highest rank along v′′ is at most
k − 3. By continuing this argument by induction down to 0, we reach a contradiction (in
fact it is reached at level 1), as no rank below 0 is available.

We conclude that the run ρ witnesses a rank k in any uk-infix of τ . Since τ contains
infinitely many uk-infixes, then ρ contains infinitely many ranks k, and, depending on the
parity of k, either both ρ and τ are rejecting or both are accepting.

This concludes the proof that w ∈ L iff w ∈ L(Bn).

We proceed to show that the sensing cost of the sequence of DPAs Bn indeed converges
to that ofRL.

Lemma 26. limn→∞ scost(Bn) = scost(RL).

Proof. Since A is strongly connected, q` is reachable from every state in A. Also, since
q` is a [0, k]-flower, we can construct a sequence of loops around q` whose ranks corre-
spond to the word uk. Thus, tacc is reachable from every state in the A-component. This
implies that Bn is strongly connected, and therefore, a run of Bn is expected to traverse
both components infinitely often, making the RL-component more dominant as n grows,
implying that limn→∞ scost(Bn) = scost(RL).

We now turn to formalize this intuition, by carefully analyzing Bn’s Markov chain.
Consider the Markov chain that corresponds to Bn, and let Tn be its transition matrix. For a
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vector v = (v1, . . . , vm), let ‖v‖ =
∑m
i=1 vi. The sensing cost of Bn is computed using the

limiting distribution πn of Bn. Since Bn is strongly connected, it has a unique stationary
distribution. Thus πn is obtained as a solution of the equation πnTn = πn, subject to
the constraint ‖πn‖ = 1. We denote by xn = (xn,1, . . . , xn,d) the sub-vector of πn that
corresponds to the A-component, and denote by yn,i the sub-vector that corresponds to
the i-th RL-component. For every 1 ≤ i < n, it is easy to see that ‖yn,i‖ = ‖yn,i+1‖.
Indeed, all the transitions from the i-th copy ofRL are to the (i+ 1)-th copy. Thus, ‖yn,i‖
is independent of i. Let an = ‖yn,1‖ ≥ 0 and bn = ‖xn‖ ≥ 0. Observe that for every n,
we have that nan + bn = 1, so in particular, limn→∞ an = 0.

Let ε > 0. By the definition of P , we always enter the first RL-component in the state
[q`] of RL – the state corresponding to L(Aq`). Let τ0 be the distribution over the states
of RL in which [q`] is assigned probability 1 and the other states of RL are assigned 0,
and let θ = (θ1, . . . , θl) be the unique stationary distribution of RL. Let R be the matrix
associated with the Markov chain of RL, and let τi = τ0R

i for every i ≥ 1. By [9], there
exists n0 such that for every index i ≥ n0 and 1 ≤ j ≤ l, we have that |τi,j−θj | ≤ ε. Note
that for all n and i, it holds that yn,i = τi.

Let {q1, . . . , qd} be the states in theA-component. Since P is strongly connected, then
for every 1 ≤ i, j ≤ d there is a path from qi to qj with at most d − 1 transitions. Since
there are at most |Σ| edges leaving each state, the probability of taking each edge along
such a path is at least µ = 1

|Σ| . Therefore, the probability of reaching qj from qi is at least

µd−1. Consider the maximal entry in xn (w.l.o.g xn,1). It holds that xn,1 ≥ ‖xn‖
d = bn

d .

Therefore, for all 1 ≤ j ≤ d, we have xn,j ≥ µd−1xn,1 ≥ µd−1

d bn.
Recall that tacc is reachable from all the states in the A-component. Therefore, there is

at least one transition from some state qj of the A-component to the first RL-component.
This means that an ≥ µ · xn,j ≥ µd

d bn, implying that bn ≤ µ−d · d · an, which tends to 0

when n tends to∞.
We now consider the cost of Bn, for n ≥ n0. Clearly, the maximal cost of a state is |P |.

Let cj be the cost of the state indexed j inRL, and let τi = (τi,1 . . . , τi,l). Then,

scost(Bn) ≤ bn|P |+ n0an|P |+ an
∑n
i=n0

∑d
j=1 τi,jcj

≤ bn|P |+ n0an|P |+ an
∑n
i=n0

∑d
j=1(θj + ε)cj .

Therefore, when n → ∞, as an → 0 and bn → 0, we get scost(Bn) ≤ (n −
n0)an

∑d
j=1 θjcj+O(ε)+o(1). But we know nan+bn = 1, and bn → 0, so nan → 1, and

therefore (n− n0)an → 1. We get scost(Bn) ≤ scost(RL) +O(ε) + o(1). Furthermore,
by Lemmas 24 and 25, for all n we have L(Bn) = L(A), thus scost(RL) ≤ scost(Bn).

Since the above holds for all ε > 0, we conclude that limn→∞ scost(Bn) =

scost(RL).

Lemmas 24, and 25 put together ensure that for languages accepted by strongly con-
nected DPAs, we have that L(Bn) = L, so with Lemma 26, we get scost(L) = scost(RL).

It is left to remove the assumption about L being recognizable by strongly connected
DPAs.
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Assume then that A is not a strongly connected DPA, and let C1, . . . , Cl be its ergodic
SCCs. For every 1 ≤ i ≤ l and q ∈ Ci, let Lqi be the language recognized by Ci, with q
as an initial state. Note that the residual automata Rqi of languages Lqi only differ in their
initial states. We refer to Ri as the common automaton where no initial state is defined. For
every 1 ≤ i ≤ l and q ∈ Ci, we have scost(Lqi ) = scost(Ri).

We can now apply the construction above on Ri, which works simultaneously for all
initial states. This yields automata (B1,n, . . . ,Bl,n)n≥1 with no initial states specified, such
that for every 1 ≤ i ≤ l:

(1) limn→∞ scost(Bi,n) = scost(Ri)

(2) For all q ∈ Ci and n ≥ 1, there is a state qn in Bi,n such that Bi,n with qn as
initial state recognizes exactly Lqi .

Let An be the DPA obtained from A by replacing each ergodic SCC Ci by Bi,n, with
the entry points to Bi,n being chosen to preserve the correct residual language. Formally, a
transition (p, a, q) ofA is replaced by (p, a, qn) inAn, where qn is as defined in (2) above.

This construction ensures that for all n ≥ 1, we have L(An) = L(A). Indeed, if the run
on a word enters a component Ci in A, the corresponding run in An enters a component
Bi,n in a state qn that matches the correct residual language. Then, the correctness of the
construction in the strongly-connected case guarantees that the word is accepted if and only
if it is in L.

It remains to show that limn→∞ scost(An)→ scost(RL), from which will follow that
scost(L) = scost(RL).

Let ρ (resp. ρn) be the SCC-reachability distribution of A (resp. An). Recall that the
ergodic components (Ci)1≤i≤l in A are replaced by (Bi,n)1≤i≤l in An, and the transient
component are left unchanged. Thus, for every 1 ≤ i ≤ l and n ≥ 1, we have that
ρ(Ci) = ρn(Bi,n). By Theorem 5, we obtain scost(An) =

∑l
i=1 ρ(Ci)scost(Bi,n). When

n tends to∞, we get
∑l
i=1 ρ(Ci)scost(Ri) (by (1) above).

Finally, let AR be the DPA obtained from A by replacing each SCC Ci by its residual
automaton Ri, again keeping the entry points to Ri consistent with residuals (here there is
no choice: the states of Ri are exactly the possible residuals).

Since the SCC-reachability distribution in A and AR coincide, it follows that
scost(AR) =

∑l
i=1 ρ(Ci)scost(Ri) = limn→∞ scost(An). It remains to show that

AR has same cost as the residual automaton RL of L, and we can conclude that
limn→∞ scost(An) = scost(RL), and finally scost(L) ≤ scost(RL). Since the oppo-
site inequality is always true by Lemma 19, we get scost(L) = scost(RL).

Lemma 27. scost(AR) = scost(RL).

Proof. Let D1, . . . , Dk be the ergodic SCCs ofRL. For every 1 ≤ i ≤ l and q ∈ CI , there
exists jqi such that Lqi is a state of Djqi

. Moreover, jqi does not depend on q, since both Ci
and Dj are strongly connected. Thus, every Ci can be mapped to some Dji such that the
states of Dji are exactly Lqi for q ∈ Ci. In fact, for each i, the automata Ri and Dji are
exactly the same, except for their initial states.
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Let ρ be the SCC-reachability distribution of A (or equivalently AR) and let σ the
SCC-reachability distribution of RL. Since the residual languages must match in A and
RL, then for every 1 ≤ j ≤ k, we have σ(Dj) =

∑
ji=j

ρ(Ci). Therefore, scost(RL) =∑k
j=1 σ(Dj)scost(Dj) =

∑k
j=1

∑
ji=j

ρ(Ci)scost(Dj) =
∑l
i=1 ρ(Ci)scost(Ri) =

scost(AR).

Remark 28. All our results can be easily extended to a setting with a non-uniform dis-
tribution on the letters given by any Markov chain, or with a different cost for each input
in each state. We can also use a decision tree to read the inputs instead of reading them
simultaneously, defining for instance a cost of 1.5 if the state starts by reading a, then if a
is true it also reads b.

4.2. Attainability of the minimal sensing cost

As we have shown in Example 17, the minimal sensing is sometimes attained only as a limit
of an infinite sequence of automata. It is thus of interest to determine when the minimal
sensing cost is actually attained by a concrete automaton. It is tempting to think that when
the minimal sensing cost is attained, then it is attained by adding an acceptance condition
on top ofRL. As we now show, this is not the case.

Example 29. Consider the DBA A in the left of Figure 4. Recall that we denote sets of
letters by a propositional formula that characterize them. Thus, p↔ q stands for the letters
∅ or {p, q}, ¬p ∧ q for {q}, and p ∧ ¬q for {p}.The DBA A accepts a word w ∈ (2{p,q})ω

iff one of the following holds:

(1) w has infinitely many occurrences of p↔ q,
(2) w has an even number of occurrences of p ↔ q and infinitely many occurrences

of ¬p ∧ q,
(3) w has an odd number of occurrences of p↔ q and infinitely many occurrences of

p ∧ ¬q.

By Theorems 18 and 7, it can be shown that scost(L(A)) = scost(A) = 2. Thus, the
minimal sensing cost for L(A) is attained byA. The residual automatonRL is depicted in
the right, and it is easy to verify that no parity condition can be put on top ofRL such that
its language becomes L(A).

Example 29 suggests that deciding whether the minimal sensing cost is attained is not
straightforward. Observe, however, that even asking whether the minimal sensing is at-
tained by an accepting condition on top of RL is not trivially tractable. Indeed, it is easy
to show that this can be solved in NP: simply guess an acceptance condition, and check
the equivalence of the resulting automata. However, we now show that this can in fact be
decided in polynomial time.

Theorem 30. Given a DPA A, the problem of deciding whether there exists a parity ac-
ceptance condition on top of RL such that L(RL) = L(A) can be solved in polynomial
time.
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q0

q1

q2

q3

p ∧ ¬q

¬p ∧ q

p ∧ ¬q

¬p ∧ q

¬p ∧ q p ∧ ¬q

p ↔ q

p ↔ q

p ↔ q

p ↔ q

¬p ∧ q p ∧ ¬q
s0 s1

p ↔ ¬q p ↔ ¬q
p ↔ q

p ↔ q

Fig. 4. An NBA with attainable minimal sensing cost and its residual automaton.

Proof. Let A = 〈Σ, Q,∆, q0, α〉 and let L = L(A). Recall that each state of RL cor-
responds to a residual language u−1L for some u ∈ Σ∗. The states of RL thus in-
duce a partition of Q by associating with every state q ∈ Q the residual language
{w ∈ Σω : w ∈ L(Aq)}. We thus refer to the states ofRL as subsets of Q.

We describe an algorithm that assigns parity ranks to the states ofRL to obtain a DPA B
such that L(B) = L, or outputs that no such parity ranking exists. The algorithm proceeds
as follows.

(1) ComputeRL, and the mapping from states of A to the states ofRL.
(2) Find a state S ⊆ Q of RL such that either for every q ∈ S, all cycles through q

inA are accepting, or all are rejecting. If no such state exists, return that no parity
ranking exists.

(3) Assign S the maximal available parity rank p that is either odd or even, depending
on the behavior of the cycles. Note that the initial maximal parity rank is the
number of states ofRL.

(4) Decrease the maximal available rank to p − 1. Remove S from RL and from A,
and go back to Step (2) with the resulting automata.

(5) When all states of RL have been assigned a parity rank, return the resulting au-
tomaton.

We now prove that the algorithm can be implemented in polynomial time, and that
it is correct. We start with the complexity analysis. Steps (1), (3), and (4) can clearly be
computed in polynomial time. Step (2) can be computed in polynomial time by noticing
that the complement problem, namely determining whether a given state of A has both an
accepting and a rejecting cycle can be done in NL, by guessing two cycles and verifying
the property. Since NL⊆ P, we can also compute Step (2) in polynomial time.

We proceed to show the correctness of the algorithm. For the first direction, assume
the algorithm computes a parity ranking on RL, thus returning a DPA B. We claim that
L(B) = L(A). Indeed, consider a word w ∈ Σω , and consider the runs of B and A on
w. Let ρ : Q → 2Q be the mapping of the states of A to their corresponding states in
B. Consider the maximal priority p that occurs infinitely often during the run of B on w,
and let S ⊆ Q be the state associated with this priority (note that the algorithm outputs a
unique rank to each state). Assume S received its rank p during iteration i of the algorithm.
Since S has the maximal rank visited infinitely often along the run of B on w, it follows
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that for every state q visited infinitely often during the run ofA on w it holds that ρ(q) was
not assigned a parity rank by the algorithm before iteration i. Thus, the cycles through the
states of S that occur infinitely often in the run of A on w are either all accepting or all
rejecting, according to which the rank p is determined. We conclude that the run of A on
w is accepting/rejecting similarly to the run of B. We conclude that L(B) = L(A).

Conversely, suppose the algorithm returns that no parity ranking exists, in Step (2) in
iteration i. This means that for every state S ⊆ Q of RL that was not yet assigned with a
parity ranking, there exist states q, r ∈ S (possibly with q = r) and cycles cq, cr through q
and r respectively, such that cq is accepting and cr is rejecting. Moreover, cr and cq do not
go through states that were previously given a parity rank by the algorithm.

Consider the states {S1, . . . , Sk} ⊆ 2Q of RL that were not assigned a parity rank
by iteration i. Since cr and cq induce cycles in those states, it follows that there exists a
cycle in RL composed of those states. Assume by way of contradiction that there exists a
parity ranking function α onRL such that the resulting DPA B satisfies L(B) = L(A). Let
Sk = arg max {α(Sj) : 1 ≤ j ≤ k} and assume w.l.og. that α(Sk) is even. Then, every
cycle through Sk that uses only the states in {S1, . . . , Sk} is accepting. This implies that
in particular, every cycle through every state q ∈ Sk in A is accepting, in contradiction to
the observation above. We conclude that there does not exist any parity ranking on RL, so
the algorithm is correct.

5. Monitoring

As described in Section 2, the definition of sensing takes into an account all words in
(2P )ω , regardless their membership in the language. In monitoring, we restrict attention
to words in the language, as once a violation is detected, no further sensing is required. In
particular, in safety languages, violation amounts to a detection of a bad prefix, and indeed
safety languages are the prominent class of languages for which monitoring is used [11].

As it turns out, however, there are many approaches to define the corresponding proba-
bility space. We suggest here two. Let A be a DLA and let L = L(A).

(1) [Letter-based] At each step, we uniformly draw a “safe” letter – one with which
we are still generating a word in pref (L), thereby iteratively generating a random
word in L.

(2) [Word-based] At the beginning, we uniformly draw a word in L.

We denote the sensing cost ofA in the letter- and word-based approaches lcost(A) and
wcost(A), respectively. The two definitions yield two different probability measures on L,
as demonstrated in Example 31 below.

Example 31. Let P = {a} and consider the safety language L = aω + (¬a) · (True)ω .
That is, if the first letter is {a}, then the suffix should be {a}ω , and if the first letter is ∅,
then all suffixes result in a word in L. Consider the DLA A for L in Figure 5.

In the letter-based definition, we initially draw a letter from 2{a} uniformly, i.e., either
a or ¬a with probability 1

2 . If we draw ¬a, then we move to q1 and stay there forever. If we
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q0q1 q2
¬a a

True a

Fig. 5. A DLA for aω + (¬a) · (True)ω .

draw a, then we move to q2 and stay there forever. Since scost(q1) = 0 and scost(q2) = 1,
and we reach q1 and q2 w.p 1

2 , we get lcost(A) = 1
2 .

In the word-based definition, we assign a uniform probability to the words in L. In this
case, almost all words are not aω , and thus the probability of aω is 0. This means that we
will get to q1 with probability 1, and thus wcost(A) = 0.

As a more realistic example, recall our traffic monitor in Section 1. There, the behavior
of the cars is the random input, and the two approaches can be understood as follows.
In the letter-based approach, we assume that the drivers do their best to avoid accidents
regardless of the history of the traffic and the traffic lights so far. Thus, after every safe
prefix, we assume that the next input is also safe. In the word-based approach, we assume
that the city is planned well enough to avoid accidents. Thus, we a-priori set the distribution
to safe traffic behaviors according to their likelihood.

We now define the two approaches formally.
The Letter-Based Approach
Consider a DLA A = 〈Σ, Q, δ, q0〉. For a state q ∈ Q, let avail(q) be the set of let-

ters available in q, namely letters that do not cause A to get stuck. Formally, avail(q) =

{σ ∈ Σ : δ(q, σ) is defined }. We model the drawing of available letters by the Markov
chain MA = 〈Q,P 〉, where the probability of a transition from state q to state q′ in
MA is P (q, q′) = |{σ∈Σ:δ(q,σ)=q′}|

|avail(q)| . Let π be the limiting distribution ofMA. We define
lcost(A) =

∑
q∈Q π(q) · scost(q).

Since computing the limiting distribution can be done in polynomial time, we have the
following.

Theorem 32. Given a DLA A, the sensing cost lcost(A) can be calculated in polynomial
time.
The Word-Based Approach
Consider a DLA A = 〈2P , Q, q0, δ〉 recognizing a non-empty safety language L. Recall
that scost(A) = limn→∞

1
|Σ|n

∑
u∈Σn scostA(u), which coincides with E[scostA(u)]

where E is the expectation with respect to the standard measure on Σω . Our goal here is to
replace this standard measure with one that restricts attention to words inL. Thus, we define
wcost(A) = E[scost(u) | u ∈ L]. For n ≥ 0, let pref (L, n) be the set of prefixes of L of
length n. Formally, pref (L, n) = pref (L) ∩ Σn. As in the case of the standard measure,
the expectation-based definition coincides with one that that is based on a limiting process:
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wcost(A) = limn→∞
1

|pref (L,n)|
∑
u∈pref (L,n) scostA(u). Thus, the expressions for scost

and wcost are similar, except that in the expectation-based definition we add conditional
probability, restricting attention to words in L, and in the limiting process we replace Σn

by pref (L, n).
Note that the term 1

|pref (L,n)| is always defined, as L is a non-empty safety language.
In particular, the expectation is well defined even if L has measure 0 in Σω .

Theorem 33. Given a DLA A, we can compute wcost(A) in polynomial time.

Proof. We will use here formal power series on one variable z, a classical tool for graph
and automata combinatorics. They can be thought of as polynomials of infinite degree.

For states p, q ∈ Q and for n ∈ N, let #paths(p, q ,n) denote the number of paths
(each one labeled by a distinct word) of length n from p to q inA. We define the generating
functions: Cp,q(z) =

∑
n∈N #paths(p, q ,n)zn and Fq(z) = Cq0,q(z)

∑
p∈Q Cq,p(z). Let

[zn]Fq(z) be the coefficient of zn in Fq(z). By the definition of Cq0,q , we get

[zn]Fq(z) =

n∑
k=0

#paths(q0 , q , k)
∑
p∈Q

#paths(q , p,n − k).

Therefore, [zn]Fq(z) is the total number of times the state q is used when listing all paths
of length n from q0.

Thus, we have
∑
u∈pref (L,n) scost(u) = 1

n

∑
q∈Q scost(q)[zn]Fq(z). Finally, let

S(z) =
∑
p∈p Cq0,p(z). Then, wcost(A) = limn→∞

1
n·[zn]S(z)

∑
q∈Q scost(q)[zn]Fq(z).

By [8], for every p, q ∈ Q, we can compute in polynomial time (using standard al-
gorithms on matrices) rational expressions for Cp,q(z). The base case is for computing
coefficients in the same irreducible aperiodic SCC represented by a matrix M : it suffices
to compute the matrix R(z) = (Id− zM)−1, its coefficient (p, q) is Cp,q(z). For instance
if {p} is a SCC in A with a self-loop labeled by k letters, then Cp,p(z) = 1

1−kz . Other
Cp,q are then computed from this base case via standard operations on rational functions.
In particular, from [8] there is a period d ≤ |Q| such that for every i ∈ {0, . . . , d − 1}
and for all rational functions Q(z) ∈ {S(z)} ∪ ⋃q∈Q {Fq(z)} considered here, we can
compute in polynomial time γ, k, and λ such that [znd+i]Q(z) ∼ γ(nd+ i)kλnd+i (where
for functions f, g : N → R we have f(n) ∼ g(n) iff limn→∞

f(n)
g(n) = 1). We remind

the formula that allows us to do so. Let Q(z) =
A(z)+B(z)(1− zr )

−j

zi be a rational function
of convergence radius r, where i, j ∈ N, A(z) and B(z) have convergence radius strictly
greater than r, and B(r) 6= 0. Then we have

[zn]Q(z) ∼ B(r)

(j − 1)! · ri n
j−1(1/r)n.

Notice that r will in general be a real algebraic number, that will be represented in our
algorithm as a root of a polynomial with integer coefficients. Standard operations as sum,
product, and comparisons on algebraic numbers (represented by polynomials) can be done
in polynomial time, using techniques as described in [20].
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Therefore, we can compute asymptotic equivalents of the form α ·nk ·λn with α, λ real
algebraic and k ∈ N [8], for both [zn]S(z) and 1

n

∑
q∈Q scost(q)[zn]Fq(z), performing

an averaging operation if d > 1. Finally, we can compute the wanted limit thanks to these
asymptotic equivalents, thereby achieving the polynomial-time computation of wcost(A).

Sensing cost of languages
For a safety language L, we define lcost(L) = inf{lcost(A) : A is a DLA for L}, and
similarly for wcost(L). Different DLAs for a language L may have different sensing costs.
We show that the minimal sensing cost in both approaches is attained at the minimal-size
DLA. We first need some definitions and notations.

Consider a safety language L ⊆ Σω . Note that for safety languages, there is at most
one Myhill-Nerode class [u], namely the class of bad prefixes, such that u−1L = ∅. We
denote this class [⊥]. The automaton RL = 〈Σ, 〈L〉 \ {[⊥]}, δL, [ε]〉 is then the unique
minimal-size DLA for L.

Consider a DLA A = 〈Σ, Q, q0, δ〉 such that L(A) = L. For a state s = [u] ∈ 〈L〉 \
{[⊥]} of RL, we associate with s a set states(A, s) = {q ∈ Q : L(Aq) = u−1L}. That
is, states(A, s) ⊆ Q contains exactly all states that A can be in after reading a word that
leadsRL to [u].

The following claims are simple exercises.

Proposition 34. Consider a safety language L and a DLA A for it.

(1) The set {states(A, s) : s ∈ 〈L〉 \ {[⊥]}} forms a partition of the states of A.
(2) For every state s ∈ 〈L〉 \ {[⊥]} of RL, letter σ ∈ Σ, and state q ∈ states(A, s),

we have δ(q, σ) ∈ states(A, δL(s, σ)).

Lemma 35. Consider a safety language L ⊆ Σω . For every DLA A with L(A) = L, we
have that lcost(A) ≥ lcost(RL) and wcost(A) ≥ wcost(RL)

Proof. We start with lcost . Consider a finite word u ∈ Σ∗ that is not a bad prefix for L.
After reading u, the DLA RL reaches the state [u] and the DLA A reaches a state q with
L(Aq) = u−1L. Indeed, otherwise we can point to a word with prefix u that is accepted
only in one of the DLAs. We claim that for every state q ∈ Q such that L(Aq) = u−1L,
it holds that sensed([u]) ⊆ sensed(q). To see this, consider a signal p ∈ sensed([u]). By
definition, there exists a set S ⊆ P and words u1 and u2 such that ([u], S\{p}, [u1]) ∈ ∆L,
([u], S ∪ {p}, [u2]) ∈ ∆L, yet [u1] 6= [u2]. By the definition ofRL, there exists z ∈ (2P )∗

such that, w.l.o.g, z ∈ u−1
1 L \ u−1

2 L. Hence, as L(Aq) = u−1L, we have that Aq accepts
(S \ {p}) · z and rejects (S ∪ {p}) · z. Let δA be the transition function of A. By the
above, δA(q, S \{p}) 6= δA(q, S∪{p}). Therefore, p ∈ sensed(q), and we are done. Now,
sensed([u]) ⊆ sensed(q) implies that scost(q) ≥ scost([u]). Since our assumption on q is
only that L(Aq) = u−1L, we get that q ∈ states(A, [u]). Thus, we conclude that for every
s ∈ 〈L〉 \ {[⊥]} and for every q ∈ states(A, s) we have that scost(q) ≥ scost(s).

Next, consider the Markov chainsMA andMRL , and let P and R be their respective
transition matrices. We index the rows and columns of P (resp.R) byQ (resp. 〈L〉\{[⊥]}).



November 29, 2018 13:38 WSPC/INSTRUCTION FILE SensingJournal

30 Shaull Almagor, Denis Kuperberg, and Orna Kupferman

Let v0 ∈ [0, 1]Q be the initial vector for A, thus v0(q0) = 1 and v0(q) = 0 for q 6= q0.
Similarly, let u0([ε]) = 1 and u0([w]) = 0 for all [w] 6= [ε]. For m ∈ N, let vm = v0Pm

and um = u0Rm.
We claim that for every s ∈ 〈L〉 \ {[⊥]} it holds that um(s) =

∑
q∈states(A,s) v

m(q).
The proof of the claim proceeds by an induction on m. For m = 0, we have q0 ∈ [ε],

and the claim follows trivially. Assume correctness for m, we prove the claim for m+ 1.
Consider states s, s′ ∈ 〈L〉 \ {[⊥]}. For every state q ∈ states(A, s) it holds that

Rs,s′ =
|{σ : δL(s, σ) = s′}|

dom(s)
=
|{σ : δ(q, σ) = q′ ∈ states(A, s′)}|

dom(q)
=

∑
q′∈states(A,s′)

Pq,q′

(1)
where the second equality follows from Observation 34 and by observing that

dom(q) = dom(s). The latter holds since if σ ∈ dom(q), then there exists q′ ∈ Q such
that q′ = δ(q, σ), so q′ ∈ states(δL(s, σ)) and σ ∈ dom(s), so dom(q) ⊆ dom(s),
and conversely - if σ ∈ dom(s) then by Proposition 34 we have that σ ∈ dom(q), so
dom(s) ⊆ dom(q).

Now, for every state s′ ∈ 〈L〉 \ {[⊥]}, we have that

um+1(s′) =
∑

s∈〈L〉\{[⊥]}

Rs,s′u
m(s)

=
∑

s∈〈L〉\{[⊥]}

Rs,s′
∑

q∈states(A,s)

vm(q) (Induction Hypothesis)

=
∑

s∈〈L〉\{[⊥]}

∑
q∈states(A,s)

Rs,s′v
m(q)

=
∑

s∈〈L〉\{[⊥]}

∑
q∈states(A,s)

∑
q′∈states(A,s′)

Pq,q′v
m(q) (Equation (1))

=
∑

q′∈states(A,s′)

∑
s∈〈L〉\{[⊥]}

∑
q∈states(A,s)

Pq,q′v
m(q)

=
∑

q′∈states(A,s′)

∑
q∈Q

Pq,q′v
m(q) (Proposition 34)

=
∑

q′∈states(A,s′)

vm+1(q′)

and the induction is complete.
Now, let π and τ be the limiting distributions of MA and MRL respectively, then

π = limn→∞
1
n

∑n
m=1 v

0Pn and τ = limn→∞
1
n

∑n
m=1 u

0Rn, and by the above we
have that τ(s) =

∑
q∈states(A,s) π(q).
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Since scost(q) ≥ scost(s) for every q ∈ states(A, s), we conclude that

lcost(A) =
∑
q∈Q

π(q)scost(q) =
∑

s∈〈L〉\{[⊥]}

∑
q∈states(A,s)

π(q)scost(q)

≥
∑

s∈〈L〉\{[⊥]}

∑
q∈states(A,s)

π(q)scost(s) =
∑

s∈〈L〉\{[⊥]}

scost(s)
∑

q∈states(A,s)

π(q)

=
∑

s∈〈L〉\{[⊥]}

scost(s)τ(s) = lcost(RL).

We proceed to wcost . Following similar arguments as above, we see that for every
finite word w, we have scostA(w) ≥ scostRL(w). Therefore, for any n ≥ 0 we have∑
w∈pref(L)∩Σn scostA(w) ≥ ∑

w∈pref(L)∩Σn scostRL(w), and finally wcost(A) ≥
wcost(RL). This shows that wcost(RL) = wcost(L).

Lemma 35 and Theorems 32 and 33 allow us to conclude with the following.

Theorem 36. Given a DLAA, we can compute lcost(L(A)) and wcost(L(A)) in polyno-
mial time.

Example 37. Consider the DLA A over the alphabet 2{a,b} appearing in Figure 6.

q0 q1

¬a ∨ ¬b

a ∧ b

a

Fig. 6. A DLA for (¬a ∨ ¬b)ω + (¬a ∨ ¬b)∗ · (a ∧ b) · aω .

Clearly,A is a minimal automaton for L = (¬a∨¬b)ω + (¬a∨¬b)∗ · (a∧ b) · aω . By
Lemma 9, we can calculate the sensing cost of A in order to find the sensing cost of L.

Clearly, scost(q0) = 2 and scost(q1) = 1. We start by computing lcost(A). The
corresponding Markov chain MA has only one ergodic component {q1}, so we obtain
lcost(A) = scost(q1) = 1.

The computation of wcost(A) is more intricate. First, note that ¬a ∨ ¬b corresponds
to 3 letters, a ∧ b to 1 letter, and a to 2 letters.

We have Cq0,q0(z) = 1
1−3z , Cq1,q1(z) = 1

1−2z , and Cq0,q1(z) = Cq0,q0(z)Cq1,q1(z) =
1

(1−3z)(1−2z) , whereas Cq1,q0(z) = 0.
Moreover, we have

S(z) = Cq0,q0(z) + Cq0,q1(z) =
2− 5z

(1− 3z)(1− 2z)

Fq0(z) = Cq0,q0(z)(Cq0,q0(z) + Cq0,q1(z)) =
2− 5z

(1− 3z)2(1− 2z)

Fq1(z) = Cq0,q1(z)Cq1,q1(z) =
1

(1− 3z)(1− 2z)
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Using standard algorithms on rational functions, we get [zn]S(z) ∼ 2−5/3
1−2/33n =

3n, [zn]Fq0(z) ∼ n3n and [zn]Fq1(z) ∼ 3n+1. We finally obtain wcost(A) =

limn→∞
2·n3n+1·3n+1

n3n = 2.
Note that wcost , unlike scost and lcost , allows to take into a consideration the cost of

transient components when a long word in L is likely to spend time in them. In particular,
if the self-loop on q0 has been labeled by two letters, say by b, rather than by three, then q0

and q1 would have participated equally and we would have gotten wcost(A) = 3/2.

6. Synthesis

In the setting of synthesis, the signals in P are partitioned into sets I and O of input and
output signals. An I/O-transducer T senses only input signals and we define its sensing
cost as the sensing cost of the DLA AT it induces.

We define the I/O-sensing cost of a realizable specification L ∈ (2I∪O)ω as the min-
imal cost of an I/O-transducer that realizes L. Thus, scostI/O(L) = inf{scost(T ) : T
is an I/O-transducer that realizes L}. In this section we consider the problem of finding a
minimally-sensing I/O-transducer that realizes a language L given by a DLA.

The realizability problem for a DLA specifications can be solved in polynomial time.
Indeed, given a DLA A, we can view A as a game between a system, which controls
the outputs, and an environment, which controls the inputs. We look for a strategy for the
system that never reaches an undefined transition. This amounts to solving a turn-based
safety game, which can be done in polynomial time.

When sensing is introduced, it is not enough for the system to win this game, as it
now has to win while minimizing the sensing cost. Intuitively, not sensing some inputs
introduces incomplete information to the game: once the system gives up sensing, it may
not know the state in which the game is and knows instead only a set of states in which the
game may be. In particular, unlike usual realizability, a strategy that minimizes the sensing
need not use the state space of the DLA. We start with an example illustrating this.

Example 38. Consider the DLA A appearing in Figure 7. The DLA is over I = {p, q}
and O = {a}. A realizing transducer over the structure of A (see T1 in Figure 8) senses p
and q, responds with a if p ∧ q was sensed and responds with ¬a if ¬p ∧ ¬q was sensed.
In case other inputs are sensed, the response is arbitrary (denoted ∗ in the figure). As
T1 demonstrates, every transducer that is based on the structure of A senses two input
signals (both p and q) every second step, thus its sensing cost is 1. As demonstrated by the
transducer T2 in Figure 9, it is possible to realize A with sensing cost of 1

2 by only sensing
p every second step. Indeed, knowing the value of p is enough in order to determine the
output. Note that T2 may output sometimes a and sometimes ¬a after reading assignments
that causes A to reach q3. Such a behavior cannot be exhibited by a transducer with the
state-structure of A.

Solving games with incomplete information is typically done by some kind of a subset-
construction, which involves an exponential blow up. Unlike usual games with incomplete
information, here the strategy of the system should not only take care of the realizability
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q0

q3

q1q2

¬p ∧ q
¬q ∧ p

p ∧ q¬p ∧ ¬q

True

a¬a

Fig. 7. The DLAA in Example 38.

∗

∗

a¬a

¬p ∧ q
¬q ∧ p

p ∧ q¬p ∧ ¬q

Fig. 8. The transducer T1 forA.

∗ a¬a
p¬p

Fig. 9. The transducer T2 forA.

but also decides which input signals should be sensed, where the goal is to obtain a mini-
mally sensing transducer. In order to address these multiple objectives, we first construct an
MDP in which the possible policies are all winning for the system, and corresponds to dif-
ferent choices of sensing. An optimal policy in this MDP then induces a minimally-sensing
transducer.

Theorem 39. Consider a DLA A over 2I∪O. If A is realizable, then there exists an MDP
M in which an optimal strategy corresponds to a minimally-sensing I/O-transducer that
realizes A. The MDPM has size exponential in |A| and can be computed in time expo-
nential in |A|.

Proof. Consider a DLA A = 〈2I∪O, Q, q0, δ〉. We obtain from A an MDP M =

〈S, START, A,P, cost〉, where S = (2Q × {0, 1,⊥}I) ∪ {START}, and A = 2I × 2O.
Intuitively, whenM is in state 〈S, `〉, for S ⊆ Q and ` : I → {0, 1,⊥}, then A can be in
every state in S, and for each input signal b ∈ I , we have that either b is true (`(b) = 1),
b is false (`(b) = 0), or b is not sensed (`(b) = ⊥). The action (o, i) means that we now
output o and in the next state we will sense only inputs in i. For ? ∈ {⊥, 0, 1}, we define
`? = {b ∈ I : `(b) = ?}.

We define the actions so that an action 〈o, i〉 is available in state 〈S, `〉 if for every q ∈ S
and i′ ⊆ `⊥, we have that δ(q, `1 ∪ i′ ∪ o) is defined. That is, an action is available if its o
component does not cause A to get stuck no matter what the assignment to the signals that
are not sensed is.

The transition probabilities are defined as follows. Consider a state 〈S, `〉, and an avail-
able action 〈o, i〉. Let S′ =

⋃
q∈S

⋃
i′⊆`⊥{δ(q, `1 ∪ i′ ∪ o)}. Recall that by taking action

〈o, i〉, we decide that in the next state we will only sense signals in i. For i ⊆ I , we say
that an assignment `′ : I → {0, 1,⊥} senses i if `′1 ∪ `′0 = i. Note that there are 2|i|

assignments that sense i. Accordingly, we have P(〈S, `〉, 〈o, i〉, 〈S′, `′〉) = 2−|i| for every
`′ : I → {0, 1,⊥} that senses i. That is, a transition from 〈S, `〉 with 〈o, i〉 goes to the
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set of all possible successors of S under inputs that are consistent with ` and the output
assignment o, and the `′ component is selected with uniform distribution among all as-
signments that sense i. The cost function depends on the number of signals we sense, thus
cost(〈S, `〉) = |`1 ∪ `0|.

Finally, in the state START we only choose an initial set of input signals to sense. Thus,
for every ` such that `1 ∪ `0, we have P(START, 〈o, i〉, 〈{q0}, `〉) = 2−|i|. Note that START

is not reachable from any state in M, and thus its cost is irrelevant. We arbitrarily set
cost(START) = 0.

We now turn to prove that cost(M) = scostI,O(A) and that a minimal-cost policy f
in M induces a minimally-sensing I/O-transducer that realizes A. Intuitively, we prove
this by showing a correspondence between transducers and policies, such that the sensing
cost of a transducer T equals the value of the policy it corresponds to inM.

Consider a memoryless minimal-cost policy f . We construct from f a transducer T =

〈I,O,S, START, µ, ρ〉, where µ and ρ are defined as follows. For sets i1 ⊆ i ⊆ I , we say
that an assignment ` : I → {0, 1,⊥} the (unique) i-sensed i1-true assignment if for every
signal b ∈ I , we have that `(b) is ⊥ if b /∈ i, is 1 if b ∈ i1, and is 0 if b ∈ i \ i1.

Let f(START) = 〈o0, i0〉. We arbitrarily e set ρ(START) to o0. For input i ∈ 2I , we set
µ(START, i) = 〈{q0}, `0〉, for the i0-sensed i-true assignment `0.

Next, consider a state 〈S, `〉 and an input i ∈ 2I . Let 〈o, i′〉 = f(〈S, `〉). We define
ρ(〈S, `〉) = o and µ(〈S, `〉, i) = 〈S′, `′〉, where S′ =

⋃
q∈S

⋃
i1⊆`⊥ δ(q, `1 ∪ i1 ∪ o) and `′

is the i′-sensed i-true assignment.
We claim that scost(T ) = cost(f). To see this, let M′ be the Markov Chain ob-

tained fromM by fixing the action in each state according to f , and let T ′ be the Markov
chain obtained from T by assigning uniform distributions to the input signals. It is easy
to see that the Markov chains M′ and T ′ are identical (with the exception of START,
which, as we mentioned, does not affect the cost). Thus, cost(f) = scost(T ). Since
cost(M) = cost(f), we can conclude that there is a transducer T that realizes A and
for which scost(T ) = cost(M). Thus, scostI,O(A) ≤ cost(M).

Conversely, consider a transducer T forA. By following the set of sensed input signals
and the output at each state, T induces a (possibly non-memoryless) policy f inM. More-
over, as above, cost(f) = scost(T ). Thus, scost(T ) ≥ cost(M). Since this holds for all
transducers T , it follows that scostI,O(A) ≥ cost(M).

Finally, we observe that the size ofM is single exponential in the size of A, and that
we can constructM in time exponential in the size of A.

Theorem 40. A minimally-sensing transducer for a realizable DLA A has size tightly ex-
ponential in |A|.

Proof. The upper bound follows from Theorem 4 applied to the MDP constructed in The-
orem 39.

For the lower bound, we describe a family of realizable DLAs A1,A2, . . . such that

eSince the output in START is ignored, this is indeed arbitrary.
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for all k ≥ 1, the DLA Ak has 1 +
∑k
i=1 pi states, yet a minimally-sensing transducer

for it requires at least
∏k
i=1 pi states, where p1, p2, ... are prime numbers. Intuitively, Ak

is constructed as follows. In the initial state qreset, the inputs signals determine a number
1 ≤ i ≤ k, and Ak moves to component i, which consists of a cycle of length pi. In every
state j in component i, the output signals must acknowledge that Ak is in state 0 ≤ j < pi
of component i. Furthermore, we force a sensing of 1 in every state except for qreset by
requiring a signal to be acknowledged in every step. Finally, we can go back to qreset only
with a special output signal, which can be outputted only in state 0 of an i component.

Thus, a realizing transducer essentially only chooses which signals to read in qreset. We
show that 0 bits can be read, but in that case we need

∏k
i=1 pi states. Indeed, the transducer

needs to keep track of the location in all the i components simultaneously, which means
keeping track of the modulo from each pi. Since every combination of such modulos is
possible, the transducer needs

∏k
i=1 pi states.

We now turn to formalize this intuition. We define Ak = {2I∪O, Q, qreset, δ}, where

• I = {i1, ..., idlog ke}∪{dI}, and we view 2I as {1, ..., k}×{dI,¬dI}. Then,O =⋃k
i=1 {oi,1, ..., oi,dlog pie} ∪ {dO, e}, and we view it as (×k

i=1
{0, ..., pi − 1}) ×

{dO,¬dO} × {e,¬e}. Thus, a letter σ ∈ 2I∪O is a pair σ = 〈σI , σO〉 with σI =

〈m, dI〉 where 1 ≤ m ≤ k and dI ∈ {0, 1}, and with σO = 〈r1, ..., rk, dO, e〉
with 0 ≤ ri < pi − 1 for all 1 ≤ i ≤ k, dO ∈ {0, 1}, and e ∈ {0, 1}.
• Q = {qreset} ∪

⋃k
i=1 {qi,0, . . . , qi,pi−1}.

• The transition function δ is defined as follows. Consider a letter σ =

〈〈m, dI〉, 〈r1, ..., rk, dO, e〉〉. In state qreset, we have δ(qreset, σ) = qm,0. For a
state qi,j , we have

δ(qi,j , σ) =

{
qi,(j+1)mod pi e = 0 ∧ ri = j ∧ dI = dO

qreset j = 0 ∧ e = 1 ∧ ri = j ∧ dI = dO

Note that δ(qi,j , σ) is undefined in all other cases, thus when dI 6= dO, when
j 6= 0 and e = 1, and when ri 6= j.

Intuitively, in order to take a transition from qi,j , ri has to match j, and dI = dO. Providing
that, if e = 0 then the transition progresses along the cycle in the i component, and if e = 1

and the state is qi,0, then the run moves to qreset.
Consider a transducer T with scost(T ) < 1 that realizes Ak. We show that T must

have at least
∏k
i=1 pi states. Observe that whenever Ak is in a state that is different from

qreset, the transducer T must sense at least dI in order to match dO. Thus, the only state
that Ak visits and in which the sensing cost can be lower than 1 (i.e. 0) is qreset. Thus, T
senses 0 in qreset, and moreover, Ak has to visit qreset infinitely often in order for the 0

sensing to reduce the sensing cost. Sensing 0 in qreset means that in the next step, Ak can
be in qi,0 for every 1 ≤ i ≤ k. Since T has to output ri = j in every qi,j , then T has to
keep track of j, which runs from 0 to pi − 1. Since T does not “know” the value of i, then
T has to keep track of every reachable combination of r1, ..., rk with 0 ≤ ri ≤ pi − 1 for
every 1 ≤ i ≤ k. From the Chinese remainder theorem, every such possible combination
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of r1, ..., rk is reachable. Thus, T needs at least
∏k
i=1 pi states.

Finally, note that that there is a transducer T that realizes Ak. Indeed, T has
∏k
i=1 pi

states and outputs e, thus causing Ak to return to qreset, every
∏k
i=1 pi steps.

We now turn to study the complexity of the problem of finding a minimally-sensing
transducer. By the construction in Theorem 39 and the polynomial time algorithm from
Theorem 4, we have the following.

Theorem 41. Consider a realizable DLAA over 2I∪O. We can calculate scostI,O(A) and
return a minimally-sensing I/O-transducer that realizes A in time exponential in |A|.

In order to complete the picture, we consider the corresponding decision problem.
Given a DLA A over 2I∪O and a threshold γ, the sensing problem in the open setting
is to decide whether scostI,O(A) < γ.

Theorem 42. The sensing problem for DLAs in the open setting is EXPTIME-complete.

Proof. The upper bound follows from Theorem 41. For the lower bound, we show that the
problem is EXPTIME hard even for a fixed γ. Given a DLA specificationA over 2I∪O, we
show that it is EXPTIME-hard to decide whether there exists a transducer T that realizesA
with scost(T ) < 1. We show a reduction from the problem of deciding the nonemptiness
of an intersection of finite deterministic tree automata proved to be EXPTIME-hard in [10].
The idea is similar to that of Theorem 40, where a reset state is used to select an object,
and a transducer can ignore the inputs in this state by using a response which is acceptable
in every possible selected object.

A deterministic automaton on finite trees (DFT) is U = 〈Σ, Q, δ, q0, F 〉, where Σ is
a finite alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ →
Q × Q is a transition function, and F ⊆ Q is a set of accepting states. We refer to the
left and right components of δ as δ/ and δ.. For example, when δ(q, σ) = 〈ql, qr〉, we
write δ/(q, σ) = ql. An DFT runs on Σ-trees. A (binary) Σ-tree is T = 〈τ, `〉 where
τ ⊆ {/, .}∗ is prefix-closed: for every x · σ ∈ τ it holds that x ∈ τ , and ` : τ → Σ is
a labeling function. For simplicity, we require that for every x ∈ τ , either {x/, x.} ⊆ τ ,
or {x/, x.} ∩ τ = ∅, in which case x is a leaf. Given a tree T = 〈τ, `〉, the run of U on
T is a Q-tree 〈τ, `′〉 where `′(ε) = q0, and for every x ∈ τ such that x is not a leaf, we
have δ(`′(x), `(x)) = 〈`′(x/), `′(x.)〉. A run is accepting if every leaf is labeled by an
accepting state. A Σ-tree T is accepted by U if the run of U on T is accepting.

The nonempty-intersection problem is to decide, given as input DFTs U1, . . . ,Un,
whether their intersection is nonempty, that is whether

⋂n
t=1 L(Ut) 6= ∅. Given U1, . . . ,Un,

we construct a specification DLA A such that
⋂n
t=1 L(Ut) 6= ∅ iff scostI,O(A) < 1. We

assume w.l.o.g. that L(Ut) 6= ∅ for all 1 ≤ t ≤ n.
We construct A as follows. Initially, the inputs specify an index 1 ≤ t ≤ n. Then, the

transducer should respond with a tree in L(Ut). This is done by challenging the transducer
with a branch in the tree, until some reset input signal is true, and the process repeats. Now,
if
⋂n
t=1 L(Ut) 6= ∅, the transducer can ignore the input signals that specify the index t and
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just repeatedly output a tree in the intersection. On the other hand, if
⋂n
t=1 L(Ut) = ∅, the

transducer must sense some information about the specified index.f

We now formalize this intuition. For 1 ≤ t ≤ n, let Ut = 〈2J , Qt, δt, qt0, F t〉. Note
that we assume w.l.o.g that the alphabet of all the DFTs is 2J . We construct a specification
DLA A = 〈2I∪O, Q, q0, δ〉 as follows. The set of states of A is Q =

⋃n
t=1Q

t ∪ {RESET}.
Assume w.l.o.g that n = 2k for some k ∈ N. We define I = {b1, . . . , bk} ∪ {dI} and
O = J ∪ {dO, e}. The input signal dI and the output signal dO denote the direction of
branching in the tree. For clarity, in an input letter i ∈ I we write i(dI) = / (and i(dI) = .)
to indicate that dI /∈ i (and dI ∈ i). We use a similar notation for dO.

We define the transition function as follows. In state RESET, we view the inputs
b1, . . . , bk as a binary encoding of a number t ∈ {1, . . . , n}. Then, δ(RESET, t) = qt0.
Next, consider a state q ∈ Qt, and consider letters i ⊆ I and o ⊆ O. We define δ as
follows:

δ(q, i ∪ o) =


RESET q ∈ F ∧ e ∈ o ∧ o(dO) = i(dI)

δt/(q, o ∩ J) e /∈ o ∧ o(dO) = i(dI) = /

δt.(q, o ∩ J) e /∈ o ∧ o(dO) = i(dI) = .

Note that δ(q, i∪o) is undefined when o(dO) 6= i(dI) or when q /∈ F and e ∈ o. Intuitively,
in state RESET, an index 1 ≤ t ≤ n is chosen. From then on, in a state q ∈ Qt, we simulate
the run of Ut on the left or right branch of the tree, depending on the signal dI . The next
letter is outputted in o, and additionally, we require that dO matches dI .

We claim that scostI,O(A) < 1 iff
⋂n
t=1 L(Ut) 6= ∅. In the first direction, assume that⋂n

t=1 L(Ut) 6= ∅, and let T be a tree such that T ∈ ⋂nt=1 L(Ut) 6= ∅. Consider the following
transducer T : in the state RESET it does not sense any inputs, and then it outputs a branch
of T according to the signal dI , while always acknowledging the dI bit with the correct
dO. When the end of the branch is reached, it outputs e. Since T is accepted by every DFT
U t, it follows that T realizes A. Moreover, let l be the longest branch in T , then every l
steps at most, T visits a state corresponding to RESET, in which it senses nothing. Thus, T
senses 1 for at most l steps, and then 0. It follows that scost(T ) ≤ l

l+1 = 1− 1
l+1 < 1.

Conversely, observe that in every state q ∈ Q \ {RESET}, a realizing transducer must
sense at least 1 signal, namely dI . Thus, the only way to get sensing cost of less than 1 is
to visit RESET infinitely often (in fact, with bounded sparsity), and to sense 0 in RESET.
However, sensing 0 in RESET means that the next state could be the initial state of any of
the n DFTs. Moreover, visiting RESET again means that at some point e was outputted in
an accepting state of one of the DFTs. Thus, the transducer outputs a tree that is accepted
in every DFT, so

⋂n
t=1 L(Ut) 6= ∅.

Finally, observe that the reduction is clearly polynomial, and thus we conclude that
deciding whether scostI,O(A) < 1 is EXPTIME-hard.

fNote that since a tree in the intersection of DFTs may be exponentially bigger than the DFTs, the lower bound
here also suggests an alternative lower bound to the exponential size of a minimally-sensed transducer, now with
a polynomial set of signals (as opposed to the proof of Theorem 40).
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6.1. Non-uniform Distributions

In Remark 28 we address non-uniform distributions for the scost setting. While there the
adaptation of the proofs is straightforward, in the case of lcost and wcost , and in the open
setting, one needs to proceed with care to get similar results. In this section we consider
non-uniform distributions, and show that incorporating them in the model does not involve
any significant changes in our techniques. We start by defining the model.

In the closed setting, we are given a labeled Markov chainM = 〈S, P, `〉 where ` is
a labeling function ` : S → Σ. The probability of a letter l ∈ Σ in state s is Ps(l) =∑
s′∈S:`(s′)=l P (s, s′). We assume that the probability has full support. That is, for every

s ∈ S and l ∈ Σ it holds that Ps(l) > 0, and that all probabilities are rational. We
lift the probability to words as follows. A sequence of states π = s1, ..., sn induces the
word wπ = `(s1) · · · `(sn). The probability of a word w from a state s is then Ps(w) =∑
π:w=wπ

Ps(π), where Ps(π) =
∏

1≤i≤n P (si−1, si), where we set s0 = s and π =

s1, . . . , sn. The distribution on Σ∗ is lifted to a distribution on Σω based on cylinder sets,
in the usual manner.

In the open setting, the specification is over 2I∪O. We are given an MDP M =

〈S, s0, (As)s∈S ,P, cost〉 and a labeling function ` : S → 2AP , where As = 2O for every
s ∈ S. Then, for a sequence of outputs ρ ∈ (2O)∗ (which corresponds to a strategy for the
MDP), the induced Markov chain defined the probability space on (2I)∗, similarly to the
above.

In the following we explain how to adapt the various results of the paper to the setting
of non-uniform inputs.

6.1.1. The letter based approach - adapting Theorem 32

In the letter based approach, we still sample letters, restricting to those that keep us within
the language. However, instead of sampling them uniformly, we need to take into account
the Markov chain describing the distribution. Thus, we are given a DLA A = 〈Σ, Q, δ, q0〉
and a labeled Markov chain M = 〈S, P, `〉 as above. Instead of constructing MA as in
Section 5, we constructMA as follows. We start with the product of A andM. That is,
the state space is Q × S, there is a transition between 〈q, s〉 and 〈q′, s′〉 if δ(q, σ) = q′ in
A, and the probability of the transition is determined according to M. Since δ is only a
partial function, we re-normalize the transition probabilities. Computing the sensing cost
lcost(A) under M proceeds by finding a limiting distribution in this chain, similarly to
Theorem 32.

6.1.2. The letter based approach - adapting Theorem 33

Computing wcost(A) is done similarly to the case of a uniform distribution, with the dif-
ference being the construction of the generating function Cp,q(z). Instead of having the
coefficient of zn being #paths(p, q, n), we need to account for the probabilities of the dif-
ferent paths. To do so, we consider again the product of A and the states S of the Markov
chain describing the distribution. Consider a state 〈q, s〉. Since the transition probabilities
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in Q×S are assumed to be rational, we assume that these probabilities are all multiples of
some common denominator p. Then, when computing the number of paths from 〈p, s〉 to
〈q, s′〉, we count each path according to its multiple of p. The rest of the computation is the
same as the proof of Theorem 33.

6.1.3. The open setting - adapting Theorem 39

Consider a realizable DLA specification A over 2I∪O, and an MDP M =

〈S, s0, (As)s∈S ,P, cost〉 describing the input distribution. Instead of directly construct-
ing an MDP from A (using a uniform distribution), we construct the MDP from A us-
ing the probabilities defined by M, as follows. The state space of the MDP is S =

(2Q × {0, 1,⊥}I × S) ∪ {START}. Next, Consider a state 〈R, `, s〉 and an action 〈o, i〉.
For an available transition to state 〈R′, `′, s′〉 the transition probability is defined as the
probability to read `′1 in s′. That is, Ps(`′1). The rest of the proof follows the same lines
as that of Theorem 39. We note that the size of a memoryless strategy may now depend
(polynomially) on the size of the distribution MDP.
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