
The Sensing Cost of Monitoring and Synthesis

Shaull Almagor1, Denis Kuperberg2, and Orna Kupferman1

1 The Hebrew University, Israel.
2 IRIT/Onera, Toulouse.

Abstract
In [2], we introduced sensing as a new complexity measure for the complexity of regular languages. Intu-
itively, the sensing cost quantifies the detail in which a random input word has to be read by a deterministic
automaton in order to decide its membership in the language. In this paper, we consider sensing in two
principal applications of deterministic automata. The first is monitoring: we are given a computation in
an on-line manner, and we have to decide whether it satisfies the specification. The second is synthesis:
we are given a sequence of inputs in an on-line manner and we have to generate a sequence of outputs
so that the resulting computation satisfies the specification. In the first, our goal is to design a monitor
that handles all computations and minimizes the expected average number of sensors used in the monit-
oring process. In the second, our goal is to design a transducer that realizes the specification for all input
sequences and minimizes the expected average number of sensors used for reading the inputs.

We argue that the two applications require new and different frameworks for reasoning about sensing,
and develop such frameworks. We focus on safety languages. We show that for monitoring, minimal
sensing is attained by a monitor based on the minimal deterministic automaton for the language. For syn-
thesis, however, the setting is more challenging: minimizing the sensing may require exponentially bigger
transducers, and the problem of synthesizing a minimally-sensing transducer is EXPTIME-complete even
for safety specifications given by deterministic automata.

1998 ACM Subject Classification F.4.3 : Formal Languages, B.8.2 Performance Analysis and
Design Aids, F.1.1 Models of Computation

Keywords and phrases Automata, regular languages, ω-regular languages, complexity, sensing, min-
imization.

© Shaull Almagor, Denis Kuperberg, and Orna Kupferman;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 The Sensing Cost of Monitoring and Synthesis

1 Introduction

Studying the complexity of a formal language, there are several complexity measures to consider.
When the language is given by means of a Turing Machine, the traditional measures are time and
space requirements. Theoretical interest as well as practical considerations have motivated addi-
tional measures, such as randomness (the number of random bits required for the execution) [11]
or communication complexity (number and length of messages required) [10]. For ω-regular lan-
guages, given by means of finite-state automata, the classical complexity measure is the size of a
minimal deterministic automaton that recognizes the language.

In [2], we introduced and studied a new complexity measure, namely the sensing cost of the
language. Intuitively, the sensing cost of a language measures the detail with which a random input
word needs to be read in order to decide membership in the language. Sensing has been studied in
several other CS contexts. In theoretical CS, in methodologies such as PCP and property testing, we
are allowed to sample or query only part of the input [8]. In more practical applications, mathemat-
ical tools in signal processing are used to reconstruct information based on compressed sensing [3],
and in the context of data streaming, one cannot store in memory the entire input, and therefore has
to approximate its properties according to partial “sketches” [12].

Our study in [2] considered regular and ω-regular languages, where sensing is defined as follows.
Consider a deterministic automaton A over an alphabet 2P , for a finite set P of signals. For a state
q of A, we say that a signal p ∈ P is sensed in q if at least one transition taken from q depends
on the truth value of p. The sensing cost of q is the number of signals it senses, and the sensing
cost of a run is the average sensing cost of states visited along the run. We extend the definition
to automata by assuming a given distribution of the inputs. The sensing cost of a language with
respect to this distribution is then the infimum sensing cost of an automaton for the language. For
simplicity, we focus on the uniform distribution, and we refer to the sensing cost of an automaton
without parameterizing it by a distribution. As detailed in Remark 1, all our results can be extended
to a setting with a parameterized distribution.

In [2], we showed that computing the sensing cost of a language can be done in polynomial time.
We further showed that while in finite words the minimal sensing cost is always attained, this is not
the case for infinite words. For example, recognizing the language L over 2{p} of all words with
infinitely many p’s, one can give up sensing of p for unboundedly-long intervals, thus the sensing
cost of L is 0, yet every deterministic automaton A that recognizes L must sense p infinitely often,
causing the sensing cost of A to be strictly greater than 0.

In the context of formal methods, sensing has two appealing applications. The first is monitoring:
we are given a computation and we have to decide whether it satisfies a specification. When the
computations are over 2P , we want to design a monitor that minimizes the expected average number
of sensors used in the monitoring process. Monitoring is especially useful when reasoning about
safety specifications [7]. There, every computation that violates the specification has a bad prefix –
one all whose extensions are not in L. Hence, as long as the computation is a prefix of some word
in L, the monitor continues to sense and examine the computation. Once a bad prefix is detected,
the monitor declares an error and no further sensing is required. The second application is synthesis.
Here, the set P of signals is partitioned into sets I andO of input and output signals, respectively. We
are given a specification L over the alphabet 2I∪O, and our goal is to construct an I/O transducer
that realizes L. That is, for every sequence of assignments to the input signals, the transducer
generates a sequence of assignments to the output signals so that the obtained computation is in L
[13]. Our goal is to construct a transducer that minimizes the expected average number of sensors
(of input signals) that are used along the interaction.

The definition of sensing cost in [2] falls short in the above two applications. For the first,
the definition in [2] does not distinguish between words in the language and words not in the lan-

S. Almagor, D. Kuperberg, and O. Kupferman 3

guage, whereas in monitoring we care only for words in the language. In particular, according to
the definition in [2], the sensing cost of a safety language is always 0. For the second, the defin-
ition in [2] considers automata and does not partition P into I and O, whereas synthesis refers to
I/O-transducers. Moreover, unlike automata, correct transducers generate only computations in the
language, and they need not generate all words in the language – only these that ensure receptiveness
with respect to all sequences of inputs.

In this work we study sensing in the context of monitoring and synthesis. We suggest definitions
that capture the intuition of “required number of sensors” in these settings and solve the problems
of generating monitors and transducers that minimize sensing. For both settings, we focus on safety
languages.

Consider, for example, a traffic monitor that has access to various sensors on roads and whose
goal is to detect accidents. Once a road accident is detected, an alarm is raised to the proper author-
ities and the monitoring is stopped until the accident has been taken care of. The monitor can read
the speed of cars along the roads, as well as the state of traffic lights. An accident is detected when
some cars do not move even-though no traffic light is stopping them. Sensing the speed of every car
and checking every traffic light requires huge sensing. Our goal is to find a monitor that minimizes
the required sensing and still detects all accidents. In the synthesis setting, our goal is extended to
designing a transducer that controls the traffic lights according to the speed of the traffic in each
direction, and satisfies some specification (say, give priority to slow traffic), while minimizing the
sensing of cars.

We can now describe our model and results. Let us start with monitoring. Recall that the defin-
ition of sensing in [2] assumes a uniform probability on the assignments to the signals, whereas in
monitoring we want to consider instead more intricate probability spaces – ones that restrict attention
to words in the language. As we show, there is more than one way to define such probability spaces,
each leading to a different measure. We study two such measures. In the first, we sample a word
randomly, letter by letter, according to a given distribution, allowing only letters that do not generate
bad prefixes. In the second, we construct a sample space directly on the words in the language. We
show that in both definitions, we can compute the sensing cost of the language in polynomial time,
and that the minimal sensing cost is attained by a minimal-size automaton. Thus, luckily enough,
even though different ways in which a computation may be given in an online manner calls for
two definitions of sensing cost, the design of a minimally-sensing monitor is the same in the two
definitions.

Next, we proceed to study sensing for synthesis. The main challenge there is that we no longer
need to consider all words in the language. Also, giving up sensing has a flavor of synthesis with
incomplete information [9]: the transducer has to realize the specification no matter what the incom-
plete information is. This introduces a new degree of freedom, which requires different techniques
than those used in [2]. In particular, while a minimal-size transducer for a safety language can be
defined on top of the state space of a minimal-size deterministic automaton for the language, this
is not the case when we seek minimally-sensing transducers. This is different also from the results
in [2] and even these in the monitoring setting, where a minimally-sensing automaton or monitor
for a safety language coincides with the minimal-size automaton for it. In fact, we show that a
minimally-sensing transducer for a safety language might be exponentially bigger than a minimal-
size automaton for the language. Consequently, the problems of computing the minimal sensing cost
and finding a minimally-sensing transducer are EXPTIME-complete even for specifications given by
means of deterministic automata. On the positive side, a transducer that attains the minimal sensing
cost always exists.

Due to lack of space, some of the proofs are omitted and can be found in the full version, in the
authors’ home pages.

4 The Sensing Cost of Monitoring and Synthesis

2 Preliminaries

Automata and Transducers A deterministic automaton on infinite words isA = 〈Σ, Q, q0, δ, α〉,
where Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ 9 Q is a partial transition
function, and α is an acceptance condition. We sometimes refer to δ as a relation ∆ ⊆ Q× Σ×Q,
with 〈q, σ, q′〉 ∈ ∆ iff δ(q, σ) = q′. A run of A on a word w = σ1 · σ2 · · · ∈ Σω is a sequence of
states q0, q1, . . . such that qi+1 = δ(qi, σi+1) for all i ≥ 0. Note that since δ is deterministic and
partial, A has at most one run on a word. A run is accepting if it satisfies the acceptance condition.
A word w ∈ Σω is accepted by A if A has an accepting run on w. The language of A, denoted
L(A), is the set of words thatA accepts. We denote byAq the automatonA with the initial state set
to q.

In a deterministic looping automaton (DLW), every run is accepting. Thus, a word is accepted if
there is a run of the automaton on it.1 Since every run is accepting, we omit the acceptance condition
and write A = 〈Σ, Q, q0, δ〉.

For finite sets I and O of input and output signals, respectively, an I/O transducer is T =
〈I,O,Q, q0, δ, ρ〉, where Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × 2I → Q is
a total transition function, and ρ : Q → 2O is a labeling function on the states. The run of T on
a word w = i0 · i1 · · · ∈ (2I)ω is the sequence of states q0, q1, . . . such that qk+1 = δ(qk, ik) for
all k ≥ 0. The output of T on w is then o1, o2, . . . ∈ (2O)ω where ok = ρ(qk) for all k ≥ 1.
Note that the first output assignment is that of q1, and we do not consider ρ(q0). This reflects the
fact that the environment initiates the interaction. The computation of T on w is then T (w) =
i0 ∪ o1, i1 ∪ o2, . . . ∈ (2I∪O)ω .

Note that the structure of each I/O-transducer T induces a DLW AT over the alphabet 2I with
a total transition relation. Thus, the language of the DLW is (2I)ω , reflecting the receptiveness of T .

Safety Languages Consider a language L ⊆ Σω . A finite word x ∈ Σ∗ is a bad prefix for L if for
every y ∈ Σω , we have that x · y 6∈ L. That is, x is a bad prefix if all its extensions are words not in
L. The language L is then a safety language if every word not in L has a bad prefix. For a language
L, let pref (L) = {x ∈ Σ∗ : there exists y ∈ Σω such that x · y ∈ L} be the set of prefixes of words
in L. Note that each word in Σ∗ is either in pref (L) or is a bad prefix for L. Since the set pref (L)
for a safety language L is fusion closed (that is, a word is in L iff all its prefixes are in pref (L)), an
ω-regular language is safety iff it can be recognized by a DLW [15].

Consider a safety language L over sets I and O of input and output signals. We say that L is
I/O-realizable if there exists an I/O transducer T all whose computations are in L. Thus, for every
w ∈ (2I)ω , we have that T (w) ∈ L. We then say that T I/O-realizes L. When I and O are clear
from the context, we omit them. The synthesis problem gets as input a safety language L over I and
O, say by means of a DLW, and returns an I/O-transducer that realizes L or declares that L is not
I/O-realizable.

Sensing In [2], we defined regular sensing as a measure for the number of sensors that need to be
operated in order to recognize a regular language. We study languages over an alphabet Σ = 2P ,
for a finite set P of signals. A letter σ ∈ Σ corresponds to a truth assignment to the signals, and
sensing a signal amounts to knowing its assignment. Describing sets of letters in Σ, it is convenient
to use Boolean assertions over P . For example, when P = {a, b}, the assertion ¬b stands for the set
{∅, {a}} of two letters.

1 For readers familiar with the Büchi acceptance condition, a looping automaton is a special case of Büchi with
α = Q.

S. Almagor, D. Kuperberg, and O. Kupferman 5

For completeness, we bring here the definitions from [2]. Consider a language L and a determ-
inistic automaton A = 〈2P , Q, q0, δ, α〉 such that L(A) = L. We assume that δ is total. For a
state q ∈ Q and a signal p ∈ P , we say that p is sensed in q if there exists a set S ⊆ P such that
δ(q, S \ {p}) 6= δ(q, S ∪ {p}). Intuitively, a signal is sensed in q if knowing its value may affect the
destination of at least one transition from q. We use sensed(q) to denote the set of signals sensed in
q. The sensing cost of a state q ∈ Q is scost(q) = |sensed(q)|. 2

For a finite run r = q1, . . . , qm of A, we define the sensing cost of r, denoted scost(r), as
1
m

∑m−1
i=0 scost(qi). That is, scost(r) is the average number of sensors that A uses during r. Now,

for a finite word w, we define the sensing cost of w in A, denoted scostA(w), as the sensing cost
of the run of A on w. Finally, the sensing cost of A is the expected sensing cost of words of length
that tends to infinity, where we assume that the letters in Σ are uniformly distributed (see Remark 1
below). Thus, scost(A) = limm→∞ |Σ|−m

∑
w∈Σm scostA(w).

Note that the definition applies to automata on both finite and infinite words, and it corresponds
to the closed setting: the automaton gets as input words over 2P and uses sensors in order to monitor
the input words and decide their membership in L. We define the sensing cost of a language L to be
the minimal cost of an automaton for L. A-priori, the minimal cost might not be attained by a single
automaton, thus we define scost(L) = inf {scost(A) : A is an automaton for L}.
I Remark 1 (On the choice of uniform distribution). The choice of a uniform distribution on
the letters in Σ may be unrealistic in practice. Indeed, in real scenarios, the distribution on the truth
assignments to the underlying signals may be complicated. Generally, such a distribution can be
given by a Markov chain (in monitoring) or by an MDP (in synthesis). As it turns out, adjusting
our setting and algorithms to handle such distributions involves only a small technical elaboration,
orthogonal to the technical challenges that exists already in a uniform distribution.

Accordingly, throughout the paper we assume a uniform distribution on the truth assignments
to the signals. In the full version we describe how our setting and algorithms are extended to the
general case. J

The definition of sensing in [2] essentially considers the sensing required in the Ergodic SCC
of a deterministic automaton for the language. Since in safety languages, the Ergodic SCCs are
accepting or rejecting sinks, which require no sensing, we have the following, which implies that the
definition in [2] is not too informative for safety languages.

I Lemma 2. For every safety language L ⊆ Σω , we have scost(L) = 0.

Markov Chains and Decision Processes A Markov chainM = 〈S, P 〉 consists of a finite state
space S and a stochastic transition matrix P : S × S → [0, 1]. That is, for all s ∈ S, we have∑
s′∈S P (s, s′) = 1. Given an initial state s0, consider the vector v0 in which v0(s0) = 1 and

v0(s) = 0 for every s 6= s0. The limiting distribution of M is limn→∞
1
n

∑n
m=0 v

0Pm. The
limiting distribution satisfies πP = π, and can be computed in polynomial time [5].

A Markov decision process (MDP) isM = 〈S, s0, (As)s∈S ,P, cost〉 where S is a finite set of
states, s0 ∈ S is an initial state, As is a finite set of actions that are available in state s ∈ S. Let
A =

⋃
s∈S As. Then, P : S×A×S 9 [0, 1] is a partial transition probability function, defining for

every two states s, s′ ∈ S and action a ∈ As, the probability of moving from s to s′ when action a
is taken. Accordingly,

∑
s′∈S P(s, a, s′) = 1. Finally, cost : S × A 9 N is a partial cost function,

assigning each state s and action a ∈ As, the cost of taking action a in state s.

2 We note that, alternatively, one could define the sensing level of states, with slevel(q) = scost(q)
|P | . Then, for all

states q, we have that slevel(q) ∈ [0, 1]. All our results hold also for this definition, simply by dividing the sensing
cost by |P |.

6 The Sensing Cost of Monitoring and Synthesis

An MDP can be thought of as a game between a player who chooses the actions and nature,
which acts stochastically according to the transition probabilities.

A policy for an MDP M is a function f : S∗ × S → A that outputs an action given the
history of the states, such that for s0, . . . , sn we have f(s0, . . . , sn) ∈ Asn . Policies corres-
pond to the strategies of the player. The cost of a policy f is the expected average cost of a
random walk in M in which the player proceeds according to f . Formally, for m ∈ N and for
a sequence of states τ = s0, . . . , sm−1, we define Pf (τ) =

∏m−1
i=1 P(si−1, f(s0 · · · si−1), si).

Then, costm(f, τ) = 1
m

∑m
i=1 cost(si, f(s1 · · · si)) and we define the cost of f as cost(f) =

lim infm→∞ 1
m

∑
τ :|τ |=m costm(f, τ) · Pf (τ).

A policy is memoryless if it depends only on the current state. We can describe a memoryless
policy by f : S → A. A memoryless policy f induces a Markov chain Mf = 〈S, Pf 〉 with
Pf (s, s′) = P(s, f(s), s′). Let π be the limiting distribution of Mf . It is not hard to prove that
cost(f) =

∑
s∈S πscost(s, f(s)). Let cost(M) = inf{cost(f) : f is a policy forM}. That is,

cost(M) is the expected cost of a game played onM in which the player uses an optimal policy.

I Theorem 3. Consider an MDP M. Then, cost(M) can be attained by a memoryless policy,
which can be computed in polynomial time.

3 Monitoring

As described in Section 2, the definition of sensing in [2] takes into an account all words in (2P)ω ,
regardless their membership in the language. In monitoring, we restrict attention to words in the
language, as once a violation is detected, no further sensing is required. In particular, in safety
languages, violation amounts to a detection of a bad prefix, and indeed safety languages are the
prominent class of languages for which monitoring is used [7].

As it turns out, however, there are many approaches to define the corresponding probability
space. We suggest here two. Let A be a DLW and let L = L(A).
1. [Letter-based] At each step, we uniformly draw a “safe” letter – one with which we are still

generating a word in pref (L), thereby iteratively generating a random word in L.
2. [Word-based] At the beginning, we uniformly draw a word in L.

We denote the sensing cost ofA in the letter- and word-based approaches lcost(A) and wcost(A),
respectively. The two definitions yield two different probability measures on L, as demonstrated in
Example 4 below.

I Example 4. Let P = {a} and consider the safety language L = aω + (¬a) · (True)ω . That is, if
the first letter is {a}, then the suffix should be {a}ω , and if the first letter is ∅, then all suffixes result
in a word in L. Consider the DLW A for L in Figure 1.

q0q1 q2
¬a a

True a

Figure 1 A DLW for aω + (¬a) · (True)ω .

In the letter-based definition, we initially draw a letter from 2{a} uniformly, i.e., either a or ¬a
w.p. 1

2 . If we draw ¬a, then we move to q1 and stay there forever. If we draw a, then we move to
q2 and stay there forever. Since scost(q1) = 0 and scost(q2) = 1, and we reach q1 and q2 w.p 1

2 , we
get lcost(A) = 1

2 .

S. Almagor, D. Kuperberg, and O. Kupferman 7

In the word-based definition, we assign a uniform probability to the words in L. In this case,
almost all words are not aω , and thus the probability of aω is 0. This means that we will get to q1
w.p. 1, and thus wcost(A) = 0. J

As a more realistic example, recall our traffic monitor in Section 1. There, the behavior of the
cars is the random input, and the two approaches can be understood as follows. In the letter-based
approach, we assume that the drivers do their best to avoid accidents regardless of the history of the
traffic and the traffic lights so far. Thus, after every safe prefix, we assume that the next input is also
safe. In the word-based approach, we assume that the city is planned well enough to avoid accidents.
Thus, we a-priori set the distribution to safe traffic behaviors according to their likelihood.

We now define the two approaches formally.

The Letter-Based Approach Consider a DLW A = 〈Σ, Q, δ, q0〉. For a state q ∈ Q, let avail(q)
be the set of letters available in q, namely letters that do not cause A to get stuck. Formally,
avail(q) = {σ ∈ Σ : δ(q, σ) is defined }. We model the drawing of available letters by the Markov
chain MA = 〈Q,P 〉, where the probability of a transition from state q to state q′ in MA is
P (q, q′) = |{σ∈Σ:δ(q,σ)=q′}|

|avail(q)| . Let π be the limiting distribution of MA. We define lcost(A) =∑
q∈Q π(q) · scost(q).
Since computing the limiting distribution can be done in polynomial time, we have the following.

I Theorem 5. Given a DLW A, the sensing cost lcost(A) can be calculated in polynomial time.

The Word-Based Approach Consider a DLWA = 〈2P , Q, q0, δ〉 recognizing a non-empty safety
language L. From [2], we have scost(A) = limn→∞

1
|Σ|n

∑
u∈Σn scostA(u), which is proven to

coincide with E[scostA(u)] where E is the expectation with respect to the standard measure on Σω .
Our goal here is to replace this standard measure with one that restricts attention to words in L.
Thus, we define wcost(A) = E[scost(u) | u ∈ L]. For n ≥ 0, let pref (L, n) be the set of prefixes
of L of length n. Formally, pref (L, n) = pref (L)∩Σn. As in the case of the standard measure, the
expectation-based definition coincides with one that that is based on a limiting process: wcost(A) =
limn→∞

1
|pref (L,n)|

∑
u∈pref (L,n) scostA(u). Thus, the expressions for scost and wcost are similar,

except that in the expectation-based definition we add conditional probability, restricting attention
to words in L, and in the limiting process we replace Σn by pref (L, n).

Note that the term 1
|pref (L,n)| is always defined, as L is a non-empty safety language. In particu-

lar, the expectation is well defined even if L has measure 0 in Σω .

I Theorem 6. Given a DLW A, we can compute wcost(A) in polynomial time.

Proof. We will use here formal power series on one variable z, a classical tool for graph and auto-
mata combinatorics. They can be thought of as polynomials of infinite degree.

For states p, q ∈ Q and for n ∈ N, let #paths(p, q,n) denote the number of paths (each one
labeled by a distinct word) of length n from p to q in A. We define the generating functions:
Cp,q(z) =

∑
n∈N #paths(p, q,n)zn and Fq(z) = Cq0,q(z)

∑
p∈Q Cq,p(z). Let [zn]Fq(z) be the

coefficient of zn in Fq(z). By the definition of Cq0,q , we get

[zn]Fq(z) =
n∑
k=0

#paths(q0 , q, k)
∑
p∈Q

#paths(q, p,n − k).

Therefore, [zn]Fq(z) is the total number of times the state q is used when listing all paths of length
n from q0.

Thus, we have
∑
u∈pref (L,n) scost(u) = 1

n

∑
q∈Q scost(q)[zn]Fq(z). Finally, let S(z) =∑

p∈p Cq0,p(z). Then, wcost(A) = limn→∞
1

n·[zn]S(z)
∑
q∈Q scost(q)[zn]Fq(z). In Appendix A.1

8 The Sensing Cost of Monitoring and Synthesis

we use techniques from [4] and [14] to compute the latter limit in polynomial time, by asymptotic
estimations of the coefficients, thus concluding the proof. J

Sensing cost of languages
For a safety language L, we define lcost(L) = inf{lcost(A) : A is a DLW for L}, and similarly for
wcost(L). Different DLWs for a language L may have different sensing costs. We show that the
minimal sensing cost in both approaches is attained at the minimal-size DLW. We first need some
definitions and notations.

Consider a safety language L ⊆ Σω . For two finite words u1 and u2, we say that u1 and u2
are right L-indistinguishable, denoted u1 ∼L u2, if for every z ∈ Σω , we have that u1 · z ∈ L iff
u2 ·z ∈ L. Thus,∼L is the Myhill-Nerode right congruence used for minimizing DFAs. For u ∈ Σ∗,
let [u] denote the equivalence class of u in ∼L and let 〈L〉 denote the set of all equivalence classes.
Each class [u] ∈ 〈L〉 is associated with the residual language u−1L = {w : uw ∈ L}. Note that for
safety languages, there is at most one class [u], namely the class of bad prefixes, such that u−1L = ∅.
We denote this class [⊥]. When L 6= ∅ is a regular safety language, the set 〈L〉 is finite, and induces
the residual automaton of L, defined byRL = 〈Σ, 〈L〉 \ {[⊥]}, δL, [ε]〉, with δL([u], a) = [u · a] for
all [u] ∈ 〈L〉 \ {[⊥]} and a ∈ Σ such that [u · a] 6= [⊥]. The automaton RL is well defined and is
the unique minimal-size DLW for L.

Consider a DLW A = 〈Σ, Q, q0, δ〉 such that L(A) = L. For a state s = [u] ∈ 〈L〉 \ {[⊥]}, we
associate with s a set states(A, s) = {q ∈ Q : L(Aq) = u−1L}. That is, states(A, s) ⊆ Q contains
exactly all state that A can be in after reading a word that leadsRL to [u].

The following claims are simple exercises.

I Proposition 3.1. Consider a safety language L and a DLW A for it.
1. The set {states(A, s) : s ∈ 〈L〉 \ {[⊥]}} forms a partition of the states of A.
2. For every state s ∈ 〈L〉 \ {[⊥]} of RL, letter σ ∈ Σ, and state q ∈ states(A, s), we have

δ(q, σ) ∈ states(A, δL(s, σ)).

I Lemma 7. Consider a safety language L ⊆ Σω . For every DLW A with L(A) = L, we have
that lcost(A) ≥ lcost(RL) and wcost(A) ≥ wcost(RL)

Proof. We outline the key points in the proof for lcost. The arguments for wcost are similar. For a
detailed proof see Appendix A.2.

Recall that the states of RL are 〈L〉 \ {[⊥]}. We start by showing that for every s ∈ 〈L〉 \
{[⊥]} and for every q ∈ states(A, s) we have that scost(q) ≥ scost(s). Next, we consider the
Markov chains MA and MRL . Using Proposition 3.1 we show that if π and τ are the limiting
distributions ofMA andMRL respectively, then for every s ∈ 〈L〉 \ {[⊥]} we have that τ(s) =∑
q∈states(A,s) π(q). Finally, sinceQ is partitioned by {states(A, s)}s we conclude that lcost(A) ≥

lcost(RL). J

Lemma 7 and Theorems 5 and 6 allow us to conclude with the following.

I Theorem 8. Given a DLW A, we can compute lcost(L(A)) and wcost(L(A)) in polynomial
time.

I Example 9. Consider the DLW A over the alphabet 2{a,b} appearing in Figure 2.
Clearly,A is a minimal automaton for L = (¬a∨¬b)ω +(¬a∨¬b)∗ · (a∧ b) ·aω . By Lemma 7,

we can calculate the sensing cost of A in order to find the sensing cost of L.
Clearly, scost(q0) = 2 and scost(q1) = 1. We start by computing lcost(A). The corresponding

Markov chain MA has only one ergodic component {q1}, so we obtain lcost(A) = scost(q1) = 1.
The computation of wcost(A) is more intricate. In Appendix A.3 we show that wcost(A) = 2.

We remark that unlike in the other versions of sensing cost, transient components can play a role in

S. Almagor, D. Kuperberg, and O. Kupferman 9

q0 q1

¬a ∨ ¬b

a ∧ b

a

Figure 2 A DLW for (¬a ∨ ¬b)ω + (¬a ∨ ¬b)∗ · (a ∧ b) · aω .

wcost. In particular, If the self-loop on q0 has been labeled by two rather than three letters, then we
would have gotten wcost(A) = 3

2 . J

4 Synthesis

In the setting of synthesis, the signals in P are partitioned into sets I and O of input and output
signals. An I/O-transducer T senses only input signals and we define its sensing cost as the sensing
cost of the DLW AT it induces.

We define the I/O-sensing cost of a realizable specification L ∈ (2I∪O)ω as the minimal cost
of an I/O-transducer that realizes L. Thus, scostI/O(A) = inf{scost(T) : T is an I/O-transducer
that realizes L}. In this section we consider the problem of finding a minimally-sensing I/O-
transducer that realizes L.

The realizability problem for a DLW specifications can be solved in polynomial time. Indeed,
given a DLW A, we can view A as a game between a system, which controls the outputs, and an
environment, which controls the inputs. We look for a strategy for the system that never reaches
an undefined transition. This amounts to solving a turn-based safety game, which can be done in
polynomial time.

When sensing is introduced, it is not enough for the system to win this game, as it now has to
win while minimizing the sensing cost. Intuitively, not sensing some inputs introduces incomplete
information to the game: once the system gives up sensing, it may not know the state in which the
game is and knows instead only a set of states in which the game may be. In particular, unlike usual
realizability, a strategy that minimizes the sensing need not use the state space of the DLW. We start
with an example illustrating this.

I Example 10. Consider the DLW A appearing in Figure 3. The DLW is over I = {p, q} and
O = {a}. A realizing transducer over the structure of A (see T1 in Figure 4) senses p and q,
responds with a if p ∧ q was sensed and responds with ¬a if ¬p ∧ ¬q was sensed. In case other
inputs are sensed, the response is arbitrary (denoted ∗ in the figure). As T1 demonstrates, every
transducer that is based on the structure of A senses two input signals (both p and q) every second
step, thus its sensing cost is 1. As demonstrated by the transducer T2 in Figure 5, it is possible to
realize A with sensing cost of 1

2 by only sensing p every second step. Indeed, knowing the value of
p is enough in order to determine the output. Note that T2 may output sometimes a and sometimes
¬a after reading assignments that causes A to reach q3. Such a behavior cannot be exhibited by a
transducer with the state-structure of A. J

Solving games with incomplete information is typically done by some kind of a subset-construction,
which involves an exponential blow up. Unlike usual games with incomplete information, here the
strategy of the system should not only take care of the realizability but also decides which input
signals should be sensed, where the goal is to obtain a minimally sensing transducer. In order to
address these multiple objectives, we first construct an MDP in which the possible policies are all
winning for the system, and corresponds to different choices of sensing. An optimal policy in this
MDP then induces a minimally-sensing transducer.

10 The Sensing Cost of Monitoring and Synthesis

q0

q3

q1q2

¬p ∧ q
¬q ∧ p

p ∧ q¬p ∧ ¬q

True

a¬a

Figure 3 The DLW A in Example 10.

∗

∗

a¬a

¬p ∧ q
¬q ∧ p

p ∧ q¬p ∧ ¬q

True

a¬a

Figure 4 The transducer T1 for A.

∗ a¬a
p¬p

Figure 5 The transducer T2 for A.

I Theorem 11. Consider a DLWA over 2I∪O. IfA is realizable, then there exists an MDPM in
which an optimal strategy corresponds to a minimally-sensing I/O-transducer that realizes A. The
MDPM has size exponential in |A| and can be computed in time exponential in |A|.

Proof. Consider a DLW A = 〈2I∪O, Q, q0, δ〉. We obtain from A an MDP M = 〈S, START,

A,P, cost〉, where S = (2Q × {0, 1,⊥}I) ∪ {START}, and A = 2I × 2O. Intuitively, whenM is
in state 〈S, `〉, for S ⊆ Q and ` : I → {0, 1,⊥}, then A can be in every state in S, and for each
input signal b ∈ I , we have that either b is true (`(b) = 1), b is false (`(b) = 0), or b is not sensed
(`(b) = ⊥). The action (o, i) means that we now output o and in the next state we will sense only
inputs in i. For ? ∈ {⊥, 0, 1}, we define `? = {b ∈ I : `(b) = ?}.

We define the actions so that an action 〈o, i〉 is available in state 〈S, `〉 if for every q ∈ S and
i′ ⊆ `⊥, we have that δ(q, `1 ∪ i′ ∪ o) is defined. That is, an action is available if its o component
does not cause A to get stuck no matter what the assignment to the signals that are not sensed is.

The transition probabilities are defined as follows. Consider a state 〈S, `〉, and an available action
〈o, i〉. Let S′ =

⋃
q∈S

⋃
i′⊆`⊥{δ(q, `1∪ i

′∪o)}. Recall that by taking action 〈o, i〉, we decide that in
the next state we will only sense signals in i. For i ⊆ I , we say that an assignment `′ : I → {0, 1,⊥}
senses i if `′1 ∪ `′0 = i. Note that there are 2|i| assignments that sense i. Accordingly, we have
P(〈S, `〉, 〈o, i〉, 〈S′, `′〉) = 2−|i| for every `′ : I → {0, 1,⊥} that senses i. That is, a transition from
〈S, `〉 with 〈o, i〉 goes to the set of all possible successors of S under inputs that are consistent with
` and the output assignment o, and the `′ component is selected with uniform distribution among
all assignments that sense i. The cost function depends on the number of signals we sense, thus
cost(〈S, `〉) = |`1 ∪ `0|.

Finally, in the state START we only choose an initial set of input signals to sense. Thus, for every
` such that `1 ∪ `0, we have P(START, 〈o, i〉, 〈{q0}, `〉) = 2−|i|. Note that START is not reachable
from any state inM, and thus its cost is irrelevant. We arbitrarily set cost(START) = 0.

In Appendix A.4 we prove that cost(M) = scostI,O(A) and that a minimal-cost policy f inM
induces a minimally-sensing I/O-transducer that realizes A. Intuitively, we prove this by showing
a correspondence between transducers and policies, such that the sensing cost of a transducer T
equals the value of the policy it corresponds to inM.

Finally, we observe that the size of M is single exponential in the size of A, and that we can
constructM in time exponential in the size of A. J

I Theorem 12. A minimally-sensing transducer for a realizable DLWA has size tightly exponen-
tial in |A|.

S. Almagor, D. Kuperberg, and O. Kupferman 11

Proof. The upper bound follows from Theorem 3 applied to the MDP constructed in Theorem 11.
For the lower bound, we describe a family of realizable DLWs A1,A2, . . . such that for all

k ≥ 1, the DLW Ak has 1 +
∑k
i=1 pi states, yet a minimally-sensing transducer for it requires at

least
∏k
i=1 pi states, where p1, p2, ... are prime numbers. Intuitively,Ak is constructed as follows. In

the initial state qreset, the inputs signals determine a number 1 ≤ i ≤ k, andAk moves to component
i, which consists of a cycle of length pi. In every state j in component i, the output signals must
acknowledge that Ak is in state 0 ≤ j < pi of component i. Furthermore, we force a sensing of 1
in every state except for qreset by requiring a signal to be acknowledged in every step. Finally, we
can go back to qreset only with a special output signal, which can be outputted only in state 0 of an i
component.

Thus, a realizing transducer essentially only chooses which signals to read in qreset. We show
that 0 bits can be read, but in that case we need

∏k
i=1 pi states. Indeed, the transducer needs to

keep track of the location in all the i components simultaneously, which means keeping track of the
modulo from each pi. Since every combination of such modulos is possible, the transducer needs∏k
i=1 pi states. In Appendix A.5 we formalize this intuition. J

We now turn to study the complexity of the problem of finding a minimally-sensing transducer.
By the construction in Theorem 11 and the polynomial time algorithm from Theorem 3, we have the
following.

I Theorem 13. Consider a realizable DLW A over 2I∪O. We can calculate costI,O(A) and
return a minimally-sensing I/O-transducer that realizes A in time exponential in |A|.

In order to complete the picture, we consider the corresponding decision problem. Given a
DLW A over 2I∪O and a threshold γ, the sensing problem in the open setting is to decide whether
costI,O(A) < γ.

I Theorem 14. The sensing problem in the open setting is EXPTIME-complete.

Proof. The upper bound follows from Theorem 13. For the lower bound, we show that the problem
is EXPTIME hard even for a fixed γ. Given a DLW specification A over 2I∪O, we show that it is
EXPTIME-hard to decide whether there exists a transducer T that realizes A with scost(T) < 1.
We show a reduction from the problem of deciding the nonemptiness of an intersection of finite
deterministic tree automata proved to be EXPTIME-hard in [6]. The idea is similar to that of The-
orem 12, where a reset state is used to select an object, and a transducer can ignore the inputs in this
state by using a response which is acceptable in every possible selected object.

A deterministic automaton on finite trees (DFT) is U = 〈Σ, Q, δ, q0, F 〉, where Σ is a finite
alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ → Q × Q is a transition
function, and F ⊆ Q is a set of accepting states. We refer to the left and right components of δ as
δ/ and δ.. For example, when δ(q, σ) = 〈ql, qr〉, we write δ/(q, σ) = ql. An DFT runs on Σ-trees.
A (binary) Σ-tree is T = 〈τ, `〉 where τ ⊆ {/, .}∗ is prefix-closed: for every x · σ ∈ τ it holds that
x ∈ τ , and ` : τ → Σ is a labeling function. For simplicity, we require that for every x ∈ τ , either
{x/, x.} ⊆ τ , or {x/, x.} ∩ τ =, in which case x is a leaf. Given a tree T = 〈τ, `〉, the run of U
on T is a Q-tree 〈τ, `′〉 where `′(ε) = q0, and for every x ∈ τ such that x is not a leaf, we have
δ(`′(x), `(x)) = 〈`′(x/), `′(x.)〉. A run is accepting if every leaf is labeled by an accepting state.
A Σ-tree T is accepted by U if the run of U on T is accepting.

The nonempty-intersection problem gets as input DFTs U1, . . . ,Un, and decides whether their
intersection is nonempty, that is

⋂n
t=1 L(Ut) 6= ∅. Given U1, . . . ,Un, we construct a specification

DLW A such that
⋂n
t=1 L(Ut) 6= ∅ iff scost(A) < 1. We assume w.l.o.g. that L(Ut) 6= ∅ for all

1 ≤ t ≤ n.

12 The Sensing Cost of Monitoring and Synthesis

We constructA as follows. Initially, the inputs specify an index 1 ≤ t ≤ n. Then, the transducer
should respond with a tree in L(Ut). This is done by challenging the transducer with a branch in
the tree, until some reset input signal is true, and the process repeats. Now, if

⋂n
t=1 L(Ut) 6= ∅, the

transducer can ignore the input signals that specify the index t and just repeatedly output a tree in
the intersection. On the other hand, if

⋂n
t=1 L(Ut) = ∅, the transducer must sense some information

about the specified index.3

We now formalize this intuition. For 1 ≤ t ≤ n, let Ut = 〈2J , Qt, δt, qt0, F t〉. Note that we
assume w.l.o.g that the alphabet of all the DFTs is 2J . We construct a specification DLW A =
〈2I∪O, Q, q0, δ〉 as follows. The set of states of A is Q =

⋃n
t=1Q

t ∪ {RESET}. Assume w.l.o.g that
n = 2k for some k ∈ N. We define I = {b1, . . . , bk} ∪ {dI} and O = J ∪ {dO, e}. The input
signal dI and the output signal dO denote the direction of branching in the tree. For clarity, in an
input letter i ∈ I we write i(dI) = / (and i(dI) = .) to indicate that dI /∈ i (and dI ∈ i). We use a
similar notation for dO.

We define the transition function as follows. In state RESET, we view the inputs b1, . . . , bk as
a binary encoding of a number t ∈ {1, . . . , n}. Then, δ(RESET, t) = qt0. Next, consider a state
q ∈ Qt, and consider letters i ⊆ I and o ⊆ O. We define δ as follows:

δ(q, i ∪ o) =


RESET q ∈ F ∧ e ∈ o ∧ o(dO) = i(dI)
δt/(q, o ∩ J) e /∈ o ∧ o(dO) = i(dI) = /

δt.(q, o ∩ J) e /∈ o ∧ o(dO) = i(dI) = .

Note that δ(q, i∪ o) is undefined when o(dO) 6= i(dI) or when q /∈ F and e ∈ o. Intuitively, in state
RESET, an index 1 ≤ t ≤ n is chosen. From then on, in a state q ∈ Qt, we simulate the run of Ut on
the left or right branch of the tree, depending on the signal dI . The next letter is outputted in o, and
additionally, we require that dO matches dI .

We claim that scost(A) < 1 iff
⋂n
t=1 L(Ut) 6= ∅. In the first direction, assume that

⋂n
t=1 L(Ut) 6=

∅, and let T be a tree such that T ∈
⋂n
t=1 L(Ut) 6= ∅. Consider the following transducer T :

in the state RESET it does not sense any inputs, and then it outputs a branch of T according to
the signal dI , while always acknowledging the dI bit with the correct dO. When the end of the
branch is reached, it outputs e. Since T is accepted by every DFT U t, it follows that T realizes A.
Moreover, let l be the longest branch in T , then every l steps at most, T visits a state corresponding
to RESET, in which it senses nothing. Thus, T senses 1 for at most l steps, and then 0. It follows that
scost(T) ≤ l

l+1 = 1− 1
l+1 < 1.

Conversely, observe that in every state q ∈ Q \ {RESET}, a realizing transducer must sense at
least 1 signal, namely dI . Thus, the only way to get sensing cost of less than 1 is to visit RESET

infinitely often (in fact, with bounded sparsity), and to sense 0 in RESET. However, sensing 0 in
RESET means that the next state could be the initial state of any of the n DFTs. Moreover, visiting
RESET again means that at some point e was outputted in an accepting state of one of the DFTs.
Thus, the transducer outputs a tree that is accepted in every DFT, so

⋂n
t=1 L(Ut) 6= ∅.

Finally, observe that the reduction is clearly polynomial, and thus we conclude that deciding
whether scost(A) < 1 is EXPTIME-hard. J

5 Discussion and Future Research

Sensing is a basic measure of the complexity of monitoring and synthesis. In monitoring safety
properties, the definition of sensing presented in [2] is not informative, as it gives sensing cost 0

3 Note that since a tree in the intersection of DFTs may be exponentially bigger than the DFTs, the lower bound
here also suggests an alternative lower bound to the exponential size of a minimally-sensed transducer, now with a
polynomial set of signals (as opposed to the proof of Theorem 12).

S. Almagor, D. Kuperberg, and O. Kupferman 13

to properties that are satisfied with probability 0. We argue that in the context of monitoring, the
definition of sensing cost should consider only computations that satisfy the property, and we study
the complexity of computing the sensing cost of a property in the new definition. We distinguish
between two approaches to define a probabilistic measure with respect to the set of computations that
satisfy a property. We show that while computing the sensing cost according to the new definitions
is technically more complicated than in [2], the minimal sensing is still attained by a minimal-size
automaton, and it can still be computed in polynomial time.

In synthesis, we introduce a new degree of freedom, namely choosing the outputs when realizing
a specification. We study the complexity of finding a minimal-sensing transducer for safety specific-
ations. We show that the minimal-sensing transducer is not necessarily minimal in size. Moreover,
interestingly, unlike the case of traditional synthesis, a minimal-sensing transducer need not even
correspond to a strategy embodied in the specification deterministic automaton. On the positive
side, we show that a minimal-sensing transducer always exists (for a realizable specification) and
that its size is at most exponential in the size of the minimal-size transducer. We also provided
matching lower bounds.

We now turn to discuss some future directions for research.
Non-safety properties We focus on safety properties. The study in [2] completes the monitoring

picture for all other ω-regular properties. We plan to continue the study of synthesis of ω-regular
properties. An immediate complication in this setting is that a finite minimal-sensing transducer
does not always exists. Indeed, even in the monitoring setting studied in [2], a minimal-sensing
automaton does not always exist.

A trade-off between sensing and quality Reducing the sensing cost of a transducer can often be
achieved by delaying the sensing of some letter, thus sensing it less often. This, however, means that
eventualities may take longer to be fulfilled, resulting in transducers of lower quality [1]. We plan
to formalize and study the trade-off between the sensing and quality and relate it to the trade-offs
between size and sensing, as well as between size and quality.

Acknowledgment We thank Elie de Panafieu for helpful discussions.

References

1 S. Almagor, U. Boker, and O. Kupferman. Discounting in LTL. In 20th TACAS, 2014.
2 S. Almagor, D. Kuperberg, and O. Kupferman. Regular sensing. In 34th FSTTCS, pages 161–173,

2014.
3 D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–1306, 2006.
4 P. Flajolet and R. Sedgewick. Analytic combinatorics: functional equations, rational and algebraic

functions. 2001.
5 C. Grinstead and J. Laurie Snell. 11:Markov chains. In Introduction to Probability. American

Mathematical Society, 1997.
6 J. Goubault. Rigid E-Unifiability is DEXPTIME-Complete. In 9th LICS, pages 498–506, 1994.
7 K. Havelund and G. Rosu. Efficient monitoring of safety properties. Software Tools for Technology

Transfer, 6(2):18–173, 2004.
8 G. Kindler. Property Testing, PCP, and Juntas. PhD thesis, Tel Aviv University, 2002.
9 O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Advances in Temporal

Logic, pages 109–127. Kluwer Academic Publishers, 2000.
10 E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press, 1997.
11 C. Mauduit and A. Sárköz. On finite pseudorandom binary sequences. i. measure of pseudoran-

domness, the legendre symbol. Acta Arith., 82(4):365–377, 1997.

14 The Sensing Cost of Monitoring and Synthesis

12 S. Muthukrishnan. Theory of data stream computing: where to go. In Proc. 30th PODS, pages
317–319, 2011.

13 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th POPL, pages
179–190, 1989.

14 M.F. Roy and A. Szpirglas. Complexity of the computation on real algebraic numbers. J. Symb.
Comput., 10(1):39–52, 1990.

15 A.P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of Computing, 6:495–
511, 1994.

S. Almagor, D. Kuperberg, and O. Kupferman 15

A Appendix

A.1 Proof of Theorem 6

By [4], for every p, q ∈ Q, we can compute in polynomial time (using standard algorithms on
matrices) rational expressions for Cp,q(z). The base case is for computing coefficients in the same
irreducible aperiodic SCC represented by a matrix M : it suffices to compute the matrix R(z) =
(Id − zM)−1, its coefficient (p, q) is Cp,q(z). For instance if {p} is a SCC in A with a self-loop
labeled by k letters, then Cp,p(z) = 1

1−kz . Other Cp,q are then computed from this base case via
standard operations on rational functions. In particular, from [4] there is a period d ≤ |Q| such that
for every i ∈ {0, . . . , d−1} and for all rational functionsQ(z) ∈ {S(z)}∪

⋃
q∈Q {Fq(z)} considered

here, we can compute in polynomial time γ, k, and λ such that [znd+i]Q(z) ∼ γ(nd+ i)kλnd+i

(where for functions f, g : N → R we have f(n) ∼ g(n) iff limn→∞
f(n)
g(n) = 1). We remind the

formula that allows us to do so. LetQ(z) = A(z)+B(z)(1− zr)−j
zi be a rational function of convergence

radius r, where i, j ∈ N, A(z) andB(z) have convergence radius strictly greater than r, andB(r) 6=
0. Then we have

[zn]Q(z) ∼ B(r)
(j − 1)! · ri n

j−1(1/r)n.

Notice that r will in general be a real algebraic number, that will be represented in our algorithm
as a root of a polynomial with integer coefficients. Standard operations as sum, product, and com-
parisons on algebraic numbers (represented by polynomials) can be done in polynomial time, using
techniques as described in [14].

Therefore, we can compute asymptotic equivalents of the form α ·nk ·λn with α, λ real algebraic
and k ∈ N [4], for both [zn]S(z) and 1

n

∑
q∈Q scost(q)[zn]Fq(z), performing an averaging oper-

ation if d > 1. Finally, we can compute the wanted limit thanks to these asymptotic equivalents,
thereby achieving the polynomial-time computation of wcost(A).

A.2 Detailed proof of Lemma 7

We start with lcost. Consider a finite word u ∈ Σ∗ that is not a bad prefix for L. After reading u,
the DLW RL reaches the state [u] and the DLW A reaches a state q with L(Aq) = u−1L. Indeed,
otherwise we can point to a word with prefix u that is accepted only in one of the DLWs. We claim
that for every state q ∈ Q such that L(Aq) = u−1L, it holds that sensed([u]) ⊆ sensed(q). To see
this, consider a signal p ∈ sensed([u]). By definition, there exists a set S ⊆ P and words u1 and
u2 such that ([u], S \ {p}, [u1]) ∈ ∆L, ([u], S ∪ {p}, [u2]) ∈ ∆L, yet [u1] 6= [u2]. By the definition
of RL, there exists z ∈ (2P)∗ such that, w.l.o.g, z ∈ u−1

1 L \ u−1
2 L. Hence, as L(Aq) = u−1L, we

have that Aq accepts (S \ {p}) · z and rejects (S ∪ {p}) · z. Let δA be the transition function of A.
By the above, δA(q, S \ {p}) 6= δA(q, S ∪ {p}). Therefore, p ∈ sensed(q), and we are done. Now,
sensed([u]) ⊆ sensed(q) implies that scost(q) ≥ scost([u]). Since our assumption on q is only that
L(Aq) = u−1L, we get that q ∈ states(A, [u]). Thus, we conclude that for every s ∈ 〈L〉 \ {[⊥]}
and for every q ∈ states(A, s) we have that scost(q) ≥ scost(s).

Next, consider the Markov chainsMA andMRL , and let P and R be their respective transition
matrices. We index the rows and columns of P (resp. R) by Q (resp. 〈L〉 \ {[⊥]}). Let v0 ∈ [0, 1]Q
be the initial vector for A, thus v0(q0) = 1 and v0(q) = 0 for q 6= q0. Similarly, let u0([ε]) = 1 and
u0([u]) = 0 for all [u] 6= [ε]. For m ∈ N, let vm = v0Pm and um = u0Rm.

We claim that for every s ∈ 〈L〉 \ {[⊥]} it holds that um(s) =
∑
q∈states(A,s) v

m(q).
The proof of the claim proceeds by an induction on m. For m = 0, we have q0 ∈ [ε], and the

claim follows trivially. Assume correctness for m, we prove the claim for m+ 1.

16 The Sensing Cost of Monitoring and Synthesis

Consider states s, s′ ∈ 〈L〉 \ {[⊥]}. For every state q ∈ states(A, s) it holds that

Rs,s′ = |{σ : δL(s, σ) = s′}|
dom(s) = |{σ : δ(q, σ) = q′ ∈ states(A, s′)}|

dom(q) =
∑

q′∈states(A,s′)

Pq,q′ (1)

where the second equality follows from Observation 3.1 and by observing that dom(q) =
dom(s). The latter holds since if σ ∈ dom(q), then there exists q′ ∈ Q such that q′ = δ(q, σ),
so q′ ∈ states(δL(s, σ)) and σ ∈ dom(s), so dom(q) ⊆ dom(s), and conversely - if σ ∈ dom(s)
then by Proposition 3.1 we have that σ ∈ dom(q), so dom(s) ⊆ dom(q).

Now, for every state s′ ∈ 〈L〉 \ {[⊥]}, we have that

um+1(s′) =
∑

s∈〈L〉\{[⊥]}

Rs,s′u
m(s)

=
∑

s∈〈L〉\{[⊥]}

Rs,s′
∑

q∈states(A,s)

vm(q) (Induction Hypothesis)

=
∑

s∈〈L〉\{[⊥]}

∑
q∈states(A,s)

Rs,s′v
m(q)

=
∑

s∈〈L〉\{[⊥]}

∑
q∈states(A,s)

∑
q′∈states(A,s′)

Pq,q′v
m(q) (Equation (1))

=
∑

q′∈states(A,s′)

∑
s∈〈L〉\{[⊥]}

∑
q∈states(A,s)

Pq,q′v
m(q)

=
∑

q′∈states(A,s′)

∑
q∈Q

Pq,q′v
m(q) (Proposition 3.1)

=
∑

q′∈states(A,s′)

vm+1(q′)

and the induction is complete.
Now, let π and τ be the limiting distributions ofMA andMRL respectively, then π = limn→∞

1
n

∑n
m=1 v

0Pn

and τ = limn→∞
1
n

∑n
m=1 u

0Rn, and by the above we have that τ(s) =
∑
q∈states(A,s) π(q).

Since scost(q) ≥ scost(s) for every q ∈ states(A, s), we conclude that

lcost(A) =
∑
q∈Q

π(q)scost(q) =
∑

s∈〈L〉\{[⊥]}

∑
q∈states(A,s)

π(q)scost(q)

≥
∑

s∈〈L〉\{[⊥]}

∑
q∈states(A,s)

π(q)scost(s) =
∑

s∈〈L〉\{[⊥]}

scost(s)
∑

q∈states(A,s)

π(q)

=
∑

s∈〈L〉\{[⊥]}

scost(s)τ(s) = lcost(RL).

We proceed to wcost. Following similar arguments as above, we see that for every finite word w,
we have scostA(w) ≥ scostRL(w). Therefore, for any n ≥ 0 we have

∑
w∈pref(L)∩Σn scostA(w) ≥∑

w∈pref(L)∩Σn scostRL(w), and finally wcost(A) ≥ wcost(RL). This shows that wcost(RL) =
wcost(L).

A.3 Computing wcost(A) in Example 9

First, note that ¬a ∨ ¬b corresponds to 3 letters, a ∧ b to 1 letter, and a to 2 letters.
We haveCq0,q0(z) = 1

1−3z ,Cq1,q1(z) = 1
1−2z , andCq0,q1(z) = Cq0,q0(z)Cq1,q1(z) = 1

(1−3z)(1−2z) ,
whereas Cq1,q0(z) = 0.

S. Almagor, D. Kuperberg, and O. Kupferman 17

Moreover, we have

S(z) = Cq0,q0(z) + Cq0,q1(z) = 2− 5z
(1− 3z)(1− 2z)

Fq0(z) = Cq0,q0(z)(Cq0,q0(z) + Cq0,q1(z)) = 2− 5z
(1− 3z)2(1− 2z)

Fq1(z) = Cq0,q1(z)Cq1,q1(z) = 1
(1− 3z)(1− 2z)

Using standard algorithms on rational functions, we get [zn]S(z) ∼ 2−5/3
1−2/33n = 3n, [zn]Fq0(z) ∼

n3n and [zn]Fq1(z) ∼ 3n+1. We finally obtain wcost(A) = limn→∞
2·n3n+1·3n+1

n3n = 2.
Note that wcost, unlike scost and lcost, allows to take into a consideration the cost of transient

components when a long word in L is likely to spend time in them.
If the self-loop on q0 has been labeled by two letters, say by b, rather than by three, then q0 and

q1 would have participated equally and we would have gotten wcost(A) = 3/2.

A.4 Proof of Theorem 11

We claim that cost(M) = scostI,O(A), and that a minimal-cost policy f inM induces a minimally-
sensing I/O-transducer that realizes A.

Consider a memoryless minimal-cost policy f . We construct from f a transducer T = 〈I,O,S, START, µ, ρ〉,
where µ and ρ are defined as follows. For sets i1 ⊆ i ⊆ I , we say that an assignment ` : I →
{0, 1,⊥} the (unique) i-sensed i1-true assignment if for every signal b ∈ I , we have that `(b) is ⊥ if
b /∈ i, is 1 if b ∈ i1, and is 0 if b ∈ i \ i1.

Let f(START) = 〈o0, i0〉. We arbitrarily 4 set ρ(START) to o0. For input i ∈ 2I , we set
µ(START, i) = 〈{q0}, `0〉, for the i0-sensed i-true assignment `0.

Next, consider a state 〈S, `〉 and an input i ∈ 2I . Let 〈o, i′〉 = f(〈S, `〉). We define ρ(〈S, `〉) = o

and µ(〈S, `〉, i) = 〈S′, `′〉, where S′ =
⋃
q∈S

⋃
i1⊆`⊥ δ(q, `1 ∪ i1 ∪ o) and `′ is the i′-sensed i-true

assignment.
We claim that scost(T) = cost(f). To see this, letM′ be the Markov Chain obtained fromM

by fixing the action in each state according to f , and let T ′ be the Markov chain obtained from T by
assigning uniform distributions to the input signals. It is easy to see that the Markov chainsM′ and
T ′ are identical (with the exception of START, which, as we mentioned, does not affect the cost).
Thus, cost(f) = scost(T). Since cost(M) = cost(f), we can conclude that there is a transducer
T that realizes A and for which scost(T) = cost(M). Thus, scostI,O(A) ≤ cost(M).

Conversely, consider a transducer T for A. By following the set of sensed input signals and the
output at each state, T induces a (possibly non-memoryless) policy f inM. Moreover, as above,
cost(f) = scost(T). Thus, scost(T) ≥ cost(M). Since this holds for all transducers T , it follows
that scostI,O(A) ≥ cost(M).

A.5 Proof of Theorem 12

We define Ak = {2I∪O, Q, qreset, δ}, where
I = {i1, ..., idlog ke}∪{dI}, and we view 2I as {1, ..., k}×{dI,¬dI}. Then,O =

⋃k
i=1 {oi,1, ..., oi,dlog pie}∪

{dO, e}, and we view it as (×k

i=1 {0, ..., pi − 1}) × {dO,¬dO} × {e,¬e}. Thus, a letter
σ ∈ 2I∪O is a pair σ = 〈σI , σO〉 with σI = 〈m, dI〉 where 1 ≤ m ≤ k and dI ∈ {0, 1},

4 Since the output in START is ignored, this is indeed arbitrary.

18 The Sensing Cost of Monitoring and Synthesis

and with σO = 〈r1, ..., rk, dO, e〉 with 0 ≤ ri < pi − 1 for all 1 ≤ i ≤ k, dO ∈ {0, 1}, and
e ∈ {0, 1}.
Q = {qreset} ∪

⋃k
i=1 {qi,0, . . . , qi,pi−1}.

The transition function δ is defined as follows. Consider a letter σ = 〈〈m, dI〉, 〈r1, ..., rk, dO, e〉〉.
In state qreset, we have δ(qreset, σ) = qm,0. For a state qi,j , we have

δ(qi,j , σ) =
{
qi,(j+1)mod pi e = 0 ∧ ri = j ∧ dI = dO

qreset j = 0 ∧ e = 1 ∧ ri = j ∧ dI = dO

Note that δ(qi,j , σ) is undefined in all other cases, thus when dI 6= dO, when j 6= 0 and e = 1,
and when ri 6= j.

Intuitively, in order to take a transition from qi,j , ri has to match j, and dI = dO. Providing that, if
e = 0 then the transition progresses along the cycle in the i component, and if e = 1 and the state is
qi,0, then the run moves to qreset.

Consider a transducer T with scost(T) < 1 that realizesAk. We show that T must have at least∏k
i=1 pi states. Observe that whenever Ak is in a state that is different from qreset, the transducer
T must sense at least dI in order to match dO. Thus, the only state that Ak visits and in which the
sensing cost can be lower than 1 (i.e. 0) is qreset. Thus, T senses 0 in qreset, and moreover, Ak
has to visit qreset infinitely often in order for the 0 sensing to reduce the sensing cost. Sensing 0 in
qreset means that in the next step, Ak can be in qi,0 for every 1 ≤ i ≤ k. Since T has to output
ri = j in every qi,j , then T has to keep track of j, which runs from 0 to pi − 1. Since T does not
“know” the value of i, then T has to keep track of every reachable combination of r1, ..., rk with
0 ≤ ri ≤ pi − 1 for every 1 ≤ i ≤ k. From the Chinese remainder theorem, every such possible
combination of r1, ..., rk is reachable. Thus, T needs at least

∏k
i=1 pi states.

Finally, note that that there is a transducer T that realizes Ak. Indeed, T has
∏k
i=1 pi states and

outputs e, thus causing Ak to return to qreset, every
∏k
i=1 pi steps.

B Non-uniform Distributions

In this section we consider non-uniform distributions, and show that incorporating them in the model
does not involve any significant changes in our techniques. We start by defining the model.

In the closed setting, we are given a labeled Markov chainM = 〈S, P, `〉 where ` is a labeling
function ` : S → Σ. The probability of a letter l ∈ Σ in state s is Ps(l) =

∑
s′∈S:`(s′)=l P (s, s′).

We assume that the probability has full support. That is, for every s ∈ S and l ∈ Σ it holds that
Ps(l) > 0, and that all probabilities are rational. We lift the probability to words as follows. A
sequence of states π = s1, ..., sn induces the word wπ = `(s1) · · · `(sn). The probability of a word
w from a state s is then Ps(w) =

∑
π:w=wπ Ps(π), where Ps(π) =

∏
1≤i≤n P (si−1, si), where we

set s0 = s and π = s1, . . . , sn. The distribution on Σ∗ is lifted to a distribution on Σω based on
cylinder sets, in the usual manner.

In the open setting, the specification is over 2I∪O. We are given an MDPM = 〈S, s0, (As)s∈S ,P, cost〉
and a labeling function ` : S → 2AP , where As = 2O for every s ∈ S. Then, for a sequence of
outputs ρ ∈ (2O)∗ (which corresponds to a strategy for the MDP), the induced Markov chain defined
the probability space on (2I)∗, similarly to the above.

In the following we explain how to adapt the various results of the paper to the setting of non-
uniform inputs.

B.1 The letter based approach - adapting Theorem 5

In the letter based approach, we still sample letters, restricting to those that keep us within the
language. However, instead of sampling them uniformly, we need to take into account the MC

S. Almagor, D. Kuperberg, and O. Kupferman 19

describing the distribution. Thus, we are given a DLW A = 〈Σ, Q, δ, q0〉 and a labeled MCM =
〈S, P, `〉 as above. Instead of constructingMA as in Section 3, we constructMA as follows. We
start with the product of A andM. That is, the state space is Q × S, there is a transition between
〈q, s〉 and 〈q′, s′〉 if δ(q, σ) = q′ in A, and the probability of the transition is determined according
toM. Since δ is only a partial function, we re-normalize the transition probabilities. Computing the
sensing cost lcost(A) underM proceeds by finding a limiting distribution in this chain, similarly to
Theorem 5.

B.2 The letter based approach - adapting Theorem 6

Computing wcost(A) is done similarly to the case of a uniform distribution, with the difference
being the construction of the generating function Cp,q(z). Instead of having the coefficient of zn

being #paths(p, q, n), we need to account for the probabilities of the different paths. To do so, we
consider again the product of A and the states S of the MC describing the distribution. Consider a
state 〈q, s〉. Since the transition probabilities in Q × S are assumed to be rational, we assume that
these probabilities are all multiples of some common denominator p. Then, when computing the
number of paths from 〈p, s〉 to 〈q, s′〉, we count each path according to its multiple of p. The rest of
the computation is the same as the proof of Theorem 6.

B.3 The open setting - adapting Theorem 11

Consider a realizable DLW specification A over 2I∪O, and an MDPM = 〈S, s0, (As)s∈S ,P, cost〉
describing the input distribution. Instead of directly constructing an MDP from A (using a uniform
distribution), we construct the MDP from A using the probabilities defined byM, as follows. The
state space of the MDP is S = (2Q×{0, 1,⊥}I×S)∪{START}. Next, Consider a state 〈R, `, s〉 and
an action 〈o, i〉. For an available transition to state 〈R′, `′, s′〉 the transition probability is defined as
the probability to read `′1 in s′. That is, Ps(`′1). The rest of the proof follows the same lines as that
of Theorem 11. We note that the size of a memoryless strategy may now depend (polynomially) on
the size of the distribution MDP.

	Introduction
	Preliminaries
	Monitoring
	Synthesis
	Discussion and Future Research
	Appendix
	Proof of Theorem 6
	Detailed proof of Lemma 7
	Computing wcost(A) in Example 9
	Proof of Theorem 11
	Proof of Theorem 12

	Non-uniform Distributions
	The letter based approach - adapting Theorem 5
	The letter based approach - adapting Theorem 6
	The open setting - adapting Theorem 11

