
Regular Sensing
Shaull Almagor1, Denis Kuperberg2, and Orna Kupferman1

1 The Hebrew University, Israel.
2 The University of Warsaw, Poland.

Abstract
The size of deterministic automata required for recognizing regular and ω-regular languages is a
well-studied measure for the complexity of languages. We introduce and study a new complexity
measure, based on the sensing required for recognizing the language. Intuitively, the sensing
cost quantifies the detail in which a random input word has to be read in order to decide its
membership in the language. We show that for finite words, size and sensing are related, and
minimal sensing is attained by minimal automata. Thus, a unique minimal-sensing deterministic
automaton exists, and is based on the language’s right-congruence relation. For infinite words,
the minimal sensing may be attained only by an infinite sequence of automata. We show that
the optimal limit cost of such sequences can be characterized by the language’s right-congruence
relation, which enables us to find the sensing cost of ω-regular languages in polynomial time.

1998 ACM Subject Classification F.4.3 : Formal Languages, B.8.2 Performance Analysis and
Design Aids, F.1.1 Models of Computation

Keywords and phrases Automata, regular languages, ω-regular languages, complexity, sensing,
minimization.

1 Introduction

Studying the complexity of a formal language, there are several complexity measures to
consider. When the language is given by means of a Turing Machine, the traditional measures
are time and space demands. Theoretical interest as well as practical considerations have
motivated additional measures, such as randomness (the number of random bits required for
the execution) [10] or communication complexity (number and length of messages required)
[9]. For regular and ω-regular languages, given by means of finite-state automata, the
classical complexity measure is the size of a minimal deterministic automaton that recognizes
the language.

We introduce and study a new complexity measure, namely the sensing cost of the
language. Intuitively, the sensing cost of a language measures the detail with which a random
input word needs to be read in order to decide membership in the language. Sensing has
been studied in several other CS contexts. In theoretical CS, in methodologies such as PCP
and property testing, we are allowed to sample or query only part of the input [7]. In
more practical applications, mathematical tools in signal processing are used to reconstruct
information based on compressed sensing [5], and in the context of data streaming, one
cannot store in memory the entire input, and therefore has to approximate its properties
according to partial “sketches” [11].

Our interest in regular sensing is motivated by the use of finite-state automata (as well
as monitors, controllers, and transducers) in reasoning about on-going behaviors of reactive
systems. In particular, a big challenge in the design of monitors is an optimization of the
sensing needed for deciding the correctness of observed behaviors. Our goal is to formalize
regular sensing in the finite-state setting and to study the sensing complexity measure for
regular and ω-regular languages.

© Shaull Almagor, Denis Kuperberg, and Orna Kupferman;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Regular Sensing

A natural setting in which sensing arises is synthesis: given a specification over sets I
and O of input and output signals, the goal is to construct a finite-state system that, given
a sequence of input signals, generates a computation that satisfies the specification. In each
moment in time, the system reads an assignment to the input signals, namely a letter in 2I ,
which requires the activation of |I| Boolean sensors. A well-studied special case of limited
sensing is synthesis with incomplete information. There, the system can read only a subset
of the signals in I, and should still generate only computations that satisfy the specification
[8, 3]. A more sophisticated case of sensing in the context of synthesis is studied in [4], where
the system can read some of the input signals some of the time. In more detail, sensing the
truth value of an input signal has a cost, the system has a budget for sensing, and it tries
to realize the specification while minimizing the required sensing budget.

We study the fundamental questions on regular sensing. We consider languages over
alphabets of the form 2P , for a finite set P of signals. Consider a deterministic automaton
A over an alphabet 2P . For a state q of A, we say that a signal p ∈ P is sensed in q if at
least one transition taken from q depends on the truth value of p. The sensing cost of q is
the number of signals it senses, and the sensing cost of a run is the average sensing cost of
states visited along the run. We extend the definition to automata by assuming a uniform
distribution of the inputs.1 Thus, the sensing cost of A is the limit of the expected sensing of
runs over words of increasing length.2 We show that this definition coincides with one that
is based on the stationary distribution of the Markov chain induced by A, which enables
us to calculate the sensing cost of an automaton in polynomial time. The sensing cost of
a language L, of either finite or infinite words, is then the infimum of the sensing costs of
deterministic automata for L. In the case of infinite words, one can study different classes
of automata, yet we show that the sensing cost is independent of the acceptance condition
being used.

We start by studying the sensing cost of regular languages of finite words. For the
complexity measure of size, the picture in the setting of finite words is very clean: each
language L has a unique minimal deterministic automaton (DFA), namely the residual
automaton RL whose states correspond to the equivalence classes of the Myhill-Nerode
right-congruence relation for L. We show that minimizing the state space of a DFA can only
reduce its sensing cost. Hence, the clean picture of the size measure is carried over to the
sensing measure: the sensing cost of a language L is attained in the DFA RL. In particular,
since DFAs can be minimized in polynomial time, we can construct in polynomial time a
minimally-sensing DFA, and can compute in polynomial time the sensing cost of languages
given by DFAs.

We then study the sensing cost of ω-regular languages, given by means of deterministic
parity automata (DPAs). Recall the size complexity measure. There, the picture for lan-
guages of infinite words is not clean: A language needs not have a unique minimal DPA, and
the problem of finding one is NP-complete [13]. It turns out that the situation is challenging
also in the sensing measure. First, we show that different minimal DPAs for a language may

1 Our study and results apply also to a non-uniform distribution on the letters, given by a Markov chain
(see Remark 19).

2 Alternatively, one could define the sensing cost of A as the cost of its “most sensing” run. Such a
worst-case approach is taken in [4], where the sensing cost needs to be kept under a certain budget in
all computations, rather than in expectation. We find the average-case approach we follow appropriate
for sensing, as the cost of operating sensors may well be amortized over different runs of the system,
and requiring the budget to be kept under a threshold in every run may be too restrictive. Thus, the
automaton must answer correctly for every word, but the sensing should be low only on average, and
it is allowed to operate an expensive sensor now and then.

S. Almagor, D. Kuperberg, and O. Kupferman 3

have different sensing costs. In fact, bigger DPAs may have smaller sensing costs.
Before describing our results, let us describe a motivating example that demonstrates the

intricacy in the case of ω-regular languages. Consider a component in a vacuum-cleaning
robot that monitors the dust collector and checks that it is empty infinitely often. The
proposition empty indicates whether the collector is empty and a sensor needs to be activated
in order to know its truth value. One implementation of the component would sense empty
throughout the computation. This corresponds to the classical two-state DPA for “infinitely
often empty”. A different implementation can give up the sensing of empty for some fixed
number k of states, then wait for empty to hold, and so forth. The bigger k is, the lazier is
the sensing and the smaller the sensing cost is. As the example demonstrates, there may be
a trade-off between the sensing cost of an implementation and its size. Other considerations,
like a preference to have eventualities satisfied as soon as possible, enter the picture too.

Our main result is that despite the above intricacy, the sensing cost of an ω-regular
language L is the sensing cost of the residual automaton RL for L. It follows that the
sensing cost of an ω-regular language can be computed in polynomial time. Unlike the case
of finite words, it may not be possible to define L on top of RL. Interestingly, however, RL
does capture exactly the sensing required for recognizing L. The proof of this property ofRL
is the main technical challenge of our contribution. The proof goes via a sequence (Bn)∞n=1
of DPAs whose sensing costs converge to that of L. The DPA Bn is obtained from a DPA A
for L by a lazy sensing strategy that spends time in n copies of RL between visits to A, but
spends enough time in A to ensure that the language is L. It is worth noting that this result
is far from being intuitive. Indeed, first, as mentioned above, the extra expressive power that
is added to the setting by the acceptance condition of DPAs makes the residual automaton
irrelevant in the context of size minimization. Moreover, in the context of sensing, there
need not be a single DPA that attains the minimal sensing cost. It is thus surprising that
RL, which has no acceptance condition, captures the sensing cost of all DPAs. We believe
that this reflects a general property of deterministic parity automata that could be useful
outside of the scope of sensing. Intuitively, it means that we can “lose track” of the run of
a deterministic automaton for arbitrary long periods, just keeping the residual in memory,
and still be able to recognize the wanted language.

Due to lack of space, some proofs appear in the appendix.

2 Preliminaries

Automata A deterministic automaton on finite words (DFA, for short) isA = 〈Σ, Q, q0, δ, α〉,
where Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ → Q is a total trans-
ition function, and α ⊆ Q is a set of accepting states. We sometimes refer to δ as a
relation ∆ ⊆ Q × Σ × Q, with 〈q, σ, q′〉 ∈ ∆ iff δ(q, σ) = q′. The run of A on a word
w = σ1 · σ2 · · ·σm ∈ Σ∗ is the sequence of states q0, q1, . . . , qm such that qi+1 = δ(qi, σi+1)
for all i ≥ 0. The run is accepting if qm ∈ α. A word w ∈ Σ∗ is accepted by A if the
run of A on w is accepting. The language of A, denoted L(A), is the set of words that A
accepts. For a state q ∈ Q, we use Aq to denote A with initial state q. We sometimes refer
also to nondeterministic automata (NFAs), where δ : Q× Σ→ 2Q suggests several possible
successor states. Thus, an NFA may have several runs on an input word w, and it accepts
w if at least one of them is accepting.

Consider a language L ⊆ Σ∗. For two finite words u1 and u2, we say that u1 and u2 are
right L-indistinguishable, denoted u1 ∼L u2, if for every z ∈ Σ∗, we have that u1 · z ∈ L iff
u2 · z ∈ L. Thus, ∼L is the Myhill-Nerode right congruence used for minimizing automata.
For u ∈ Σ∗, let [u] denote the equivalence class of u in ∼L and let 〈L〉 denote the set

4 Regular Sensing

of all equivalence classes. Each class [u] ∈ 〈L〉 is associated with the residual language
u−1L = {w : uw ∈ L}. When L is regular, the set 〈L〉 is finite, and induces the residual
automaton of L, defined byRL = 〈Σ, 〈L〉,∆L, [ε], α〉, with 〈[u], a, [u·a]〉 ∈ ∆L for all [u] ∈ 〈L〉
and a ∈ Σ. Also, α contains all classes [u] with u ∈ L. The DFA RL is well defined and is
the unique minimal DFA for L.

A deterministic automaton on infinite words is A = 〈Σ, Q, q0, δ, α〉, where Q, q0, and δ
are as in DFA, and α is an acceptance condition. The run of A on an infinite input word
w = σ1 · σ2 · · · ∈ Σω is defined as for automata on finite words, except that the sequence of
visited states is now infinite. For a run r = q0, q1, . . ., let inf (r) denote the set of states that
r visits infinitely often. Formally, inf (r) = {q : q = qi for infinitely many i’s}. We consider
the following acceptance conditions. In a Büchi automaton, the acceptance condition is a
set α ⊆ Q and a run r is accepting iff inf (r) ∩ α 6= ∅. Dually, in a co-Büchi, again α ⊆ Q,
but r is accepting iff inf (r)∩α = ∅. Finally, parity condition is a mapping α : Q→ [i, . . . , j],
for integers i ≤ j, and a run r is accepting iff maxq∈inf (r){α(q)} is even.

We extend the right congruence ∼L as well as the definition of the residual automaton
RL to languages L ⊆ Σω. Here, however, RL need not accept the language of L, and we
ignore its acceptance condition.

Sensing We study languages over an alphabet Σ = 2P , for a finite set P of signals. A letter
σ ∈ Σ corresponds to a truth assignment to the signals. When we define languages over Σ,
we use predicates on P in order to denote sets of letters. For example, if P = {a, b, c}, then
the expression (True)∗ · a · b · (True)∗ describes all words over 2P that contain a subword
σa · σb with σa ∈ {{a}, {a, b}, {a, c}, {a, b, c}} and σb ∈ {{b}, {a, b}, {b, c}, {a, b, c}}.

Consider an automaton A = 〈2P , Q, q0, δ, α〉. For a state q ∈ Q and a signal p ∈ P , we
say that p is sensed in q if there exists a set S ⊆ P such that δ(q, S \ {p}) 6= δ(q, S ∪ {p}).
Intuitively, a signal is sensed in q if knowing its value may affect the destination of at least
one transition from q. We use sensed(q) to denote the set of signals sensed in q. The sensing
cost of a state q ∈ Q is scost(q) = |sensed(q)|. 3

Consider a deterministic automaton A over Σ = 2P (and over finite or infinite words).
For a finite run r = q1, . . . , qm of A, we define the sensing cost of r, denoted scost(r), as
1
m

∑m−1
i=0 scost(qi). That is, scost(r) is the average number of sensors that A uses during r.

Now, for a finite word w, we define the sensing cost of w in A, denoted scostA(w), as the
sensing cost of the run of A on w. Finally, the sensing cost of A is the expected sensing cost
of words of length that tends to infinity, where we assume that the letters in Σ are uniformly
distributed. Thus, scost(A) = limm→∞ |Σ|−m

∑
w:|w|=m scostA(w). Note that the definition

applies to automata on both finite and infinite words.
Two DFAs may recognize the same language and have different sensing costs. In fact,

as we demonstrate in Example 1 below, in the case of infinite words two different minimal
automata for the same language may have different sensing costs.

For a language L of finite or infinite words, the sensing cost of L, denoted scost(L) is
the minimal sensing cost required for recognizing L by a deterministic automaton. Thus,
scost(L) = infA:L(A)=L scost(A). For the case of infinite words, we allow A to be a determ-
inistic automaton of any type. In fact, as we shall see, unlike the case of succinctness, the
sensing cost is independent of the acceptance condition used.

3 We note that, alternatively, one could define the sensing level of states, with slevel(q) = |sensed(q)|
|P | .

Then, for all states q, we have that slevel(q) ∈ [0, 1]. All our results hold also for this definition, simply
by dividing the sensing cost by |P |.

S. Almagor, D. Kuperberg, and O. Kupferman 5

I Example 1. Let P = {a}. Consider the language L ⊆ (2{a})ω of all words with infinitely
many a and infinitely many ¬a. In the following figure we present two minimal DBAs for L
with different sensing costs.

q0 q1 q2

¬a a
a ¬a

true

s0 s1 s2

¬a aa

¬a

a

¬a

While all the states of the second automaton sense a, thus its sensing cost is 1, the signal
a is not sensed in all the states of the first automaton, thus its sensing cost is strictly smaller
than 1 (to be precise, it is 4

5 , as we shall see in Example 7).

I Remark 2. Our study of sensing considers deterministic automata. The notion of sensing
is less natural in the nondeterministic setting. From a conceptual point of view, we want
to capture the number of sensors required for an actual implementation for recognizing the
language. Technically, guesses can reduce the number of required sensors. To see this, take
P = {a} and consider the language L = True∗ · a. A DFA for L needs two states, both
sensing a. An NFA for L can guess the position of the letter before the last one, where
it moves to the only state that senses a. The sensing cost of such an NFA is 0 (for any
reasonable extension of the definition of cost on NFAs). J

Probability Consider a directed graph G = 〈V,E〉. A strongly connected component
(SCC) of G is a maximal (with respect to containment) set C ⊆ V such that for all x, y ∈ C,
there is a path from x to y. An SCC (or state) is ergodic if no other SCC is reachable from
it, and is transient otherwise.

An automaton A = 〈Σ, Q, q0, δ, α〉 induces a directed graph GA = 〈Q,E〉 in which
〈q, q′〉 ∈ E iff there is a letter σ such that q′ ∈ δ(q, σ). When we talk about the SCCs
of A, we refer to those of GA. Recall that we assume that the letters in Σ are uniformly
distributed, thus A also corresponds to a Markov chain MA in which the probability of a
transition from state q to state q′ is pq,q′ = 1

|Σ| |{σ ∈ Σ : δ(q, σ) = q′}|. Let C be the set of
A’s SCC, and Ce ⊆ C be the set of its ergodic SCC’s.

Consider an ergodic SCC C ∈ Ce. Let PC be the matrix describing the probability of
transitions in C. Thus, the rows and columns of PC are associated with states, and the value
in coordinate q, q′ is pq,q′ . By [6], there is a unique probability vector πC ∈ [0, 1]C such that
πCPC = πC . This vector describes the stationary distribution of C: for all q ∈ C it holds
that πC(q) = limm→∞

EC
m(q)
m , where ECm(q) is the average number of occurrences of q in a run

of MA of length m that starts anywhere in C [6]. Thus, intuitively, πC(q) is the probability
that a long run that starts in C ends in q. In order to extend the distribution to the entire
Markov chain of A, we have to take into account the probability of reaching each of the
ergodic components. The SCC-reachability distribution of A is the function ρ : C → [0, 1]
that maps each ergodic SCC C of A to the probability that MA eventually reaches C,
starting from the initial state. We can now define the limiting distribution π : Q→ [0, 1], as

π(q) =
{

0 if q is transient,
πC(q)ρ(C) if q is in some C ∈ Ce.

Note that
∑
q∈Q π(q) = 1, and that if P is the matrix describing the transitions of MA and

π is viewed as a vector in [0, 1]Q, then πP = π. Intuitively, the limiting distribution of state
q describes the probability of a run on a random and long input word to end in q. Formally,
we have the following lemma, whose proof appears in Appendix A.1.

6 Regular Sensing

I Lemma 3. Let Em(q) be the expected number of occurrences of a state q in a run of length
m of MA that starts in q0. Then, π(q) = limm→∞

Em(q)
m .

Computing The Sensing Cost of an Automaton Consider a deterministic automaton
A = 〈2P , Q, δ, q0, α〉. The definition of scost(A) by means of the expected sensing cost of
words of length that tends to infinity does not suggest an algorithm for computing it. In
this section we show that the definition coincides with a definition that sums the costs of
the states in A, weighted according to the limiting distribution, and show that this implies
a polynomial-time algorithm for computing scost(A). This also shows that the cost is well-
defined for all automata.

I Theorem 4. For all automata A, we have scost(A) =
∑
q∈Q π(q) · scost(q), where π is

the limiting distribution of A.

I Remark 5. It is not hard to see that if A is strongly connected, then π is the unique
stationary distribution of MA and is independent of the initial state of A. Accordingly,
scost(A) is also independent of A’s initial state in this special case. J

I Theorem 6. Given an automaton A, the sensing cost scost(A) can be calculated in poly-
nomial time.

Proof. By Theorem 4, we have that scost(A) =
∑
q∈Q π(q) ·scost(q), where π is the limiting

distribution of A. By the definition of π, we have that π(q) = πC(q)ρ(C), if q is in some
C ∈ Ce. Otherwise, π(q) = 0. Hence, the computational bottleneck is the calculation of
the SCC-reachability distribution ρ : C → [0, 1] and the stationary distributions πC for
every C ∈ Ce. It is well known that both can be computed in polynomial time via classic
algorithms on matrices. For completeness, we give the details in Appendix A.3. J J

I Example 7. Recall the first DBA described in Example 1. Its limiting distribution is
π(q0) = π(q1) = 2

5 , π(q2) = 1
5 . Accordingly, its cost is 1 · 2

5 + 1 · 2
5 + 0 · 1

5 = 4
5 .

Additional examples can be found in Appendix A.4.

3 The Sensing Cost of Regular Languages of Finite Words

In this section we study the setting of finite words. We show that there, sensing minimization
goes with size minimization, which makes things clean and simple, as size minimization for
DFAs is a feasible and well-studied problem. We also study theoretical properties of sensing.
We show that, surprisingly, abstraction of signals may actually increase the sensing cost of
a language, and we study the effect of classical operations on regular languages on their
sensing cost. These last two contributions can be found in Appendices A.9 and A.10).

Consider a regular language L ⊆ Σ∗, with Σ = 2P . Recall that the residual automaton
RL = 〈Σ, 〈L〉,∆L, [ε], α〉 is the minimal-size DFA that recognizes L. We claim that RL also
minimizes the sensing cost of L.

I Lemma 8. Consider a regular language L ⊆ Σ∗. For every DFA A with L(A) = L, we
have that scost(A) ≥ scost(RL).

Proof. Consider a word u ∈ Σ∗. After reading u, the DFA RL reaches the state [u] and
the DFA A reaches a state q with L(Aq) = u−1L. Indeed, otherwise we can point to a
word with prefix u that is accepted only in one of the DFAs. We claim that for every state
q ∈ Q such that L(Aq) = u−1L, it holds that sensed([u]) ⊆ sensed(q). To see this, consider
a signal p ∈ sensed([u]). By definition, there exists a set S ⊆ P and words u1 and u2 such

S. Almagor, D. Kuperberg, and O. Kupferman 7

that ([u], S \ {p}, [u1]) ∈ ∆L, ([u], S ∪ {p}, [u2]) ∈ ∆L, yet [u1] 6= [u2]. By the definition of
RL, there exists z ∈ (2P)∗ such that, w.l.o.g, z ∈ u−1

1 L \ u−1
2 L. Hence, as L(Aq) = u−1L,

we have that Aq accepts (S \ {p}) · z and rejects (S ∪ {p}) · z. Let δA be the transition
function of A. By the above, δA(q, S \ {p}) 6= δA(q, S ∪ {p}). Therefore, p ∈ sensed(q), and
we are done. Now, sensed([u]) ⊆ sensed(q) implies that scost(q) ≥ scost([u]).

Consider a word w1 · · ·wm ∈ Σ∗. Let r = r0, . . . , rm and [u0], . . . , [um] be the runs
of A and RL on w, respectively. Note that for all i ≥ 0, we have ui = w1 · w2 · · ·wi.
For all i ≥ 0, we have that L(Ari) = u−1

i L, implying that then scost(ri) ≥ scost([ui]).
Hence, scostA(w) ≥ scostRL

(w). Since this holds for every word in Σ∗, it follows that
scost(A) ≥ scost(RL). J J

Since L(RL) = L, then scost(L) ≤ scost(RL). This, together with Lemma 8, enables us
to conclude the following.

I Theorem 9. For every regular language L ⊆ Σ∗, we have scost(L) = scost(RL).

Finally, since DFAs can be size-minimized in polynomial time, Theorems 6 and 9 imply
we can efficiently minimize also the sensing cost of a DFA and calculate the sensing cost of
its language:

I Theorem 10. Given a DFA A, the problem of computing scost(L(A)) can be solved in
polynomial time.

4 The Sensing Cost of ω-Regular Languages

For the case of finite words, we have a very clean picture: minimizing the state space of
a DFA also minimizes its sensing cost. In this section we study the case of infinite words.
There, the picture is much more complicated. In Example 1 we saw that different minimal
DBAs may have a different sensing cost. We start this section by showing that even for
languages that have a single minimal DBA, the sensing cost may not be attained by this
minimal DBA, and in fact it may be attained only as a limit of a sequence of DBAs.

I Example 11. Let P = {p}, and consider the language L of all words w1 ·w2 · · · such that
wi = {p} for infinitely many i’s. Thus, L = (True∗ · p)ω. A minimal DBA for L has two
states. The minimal sensing cost for a two-state DBA for L is 2

3 (the classical two-state DBA
for L senses p in both states and thus has sensing cost 1. By taking A1 in the sequence we
shall soon define we can recognize L by a two-state DBA with sensing cost 2

3). Consider the
sequence of DBAs Am appearing in Figure 1. The DBA Am recognizes (True≥m ·p)ω, which
is equivalent to L, yet enables a “lazy" sensing of p. Formally, The stationary distribution
π for Am is such that π(qi) = 1

m+1 for 0 ≤ i ≤ m − 1 and π(qm) = 2
m+1 . In the states

q0, . . . , qm−1 the sensing cost is 0 and in qm it is 1. Accordingly, scost(Am) = 2
m+1 , which

tends to 0 as m tends to infinity.

q0 q1 qm−1 qm
true true ¬p

p

Figure 1 The DBA Am.

4.1 Characterizing scost(L) by the residual automaton for L

In this section we state and prove our main result, which characterizes the sensing cost of
an ω-regular language by means of the residual automaton for the language:

8 Regular Sensing

I Theorem 12. For every ω-regular language L ⊆ Σω, we have scost(L) = scost(RL).

The proof is described over the following section. The first direction, showing that scost(L) ≥
scost(RL), is proved by similar considerations to those used in the proof of Lemma 8 for the
setting of finite words, and can be found in Appendix A.5.

Our main effort is to prove that scost(L) ≤ scost(RL). To show this, we construct, given
a DPA A such that L(A) = L, a sequence (Bn)n≥1 of DPAs such that L(Bn) = L for every
n ≥ 1, and limn→∞ scost(Bn) = scost(RL). We note that since the DPAs Bn have the
same acceptance condition as A, there is no trade-off between sensing cost and acceptance
condition. More precisely, if L can be recognized by a DPA with parity ranks [i, j] (in
particular, if L is DBW-recognizable), then the sensing cost for L(A) can be obtained by a
DPA with parity ranks [i, j].

We first assume that A is strongly connected. We will later show how to drop this
assumption.

Let A = 〈Σ, Q, q0,∆, αA〉 be a strongly connected DPA for L. We assume that A is
minimally ranked. Thus, if A has parity ranks {0, 1, . . . , k}, then there is no DPA for L with
ranks {0, 1, . . . , k − 1} or {1, 2, . . . , k}. Also, if A has ranks {1, 2, . . . , k}, we consider the
complement DPA, which is A with ranks {0, 1, . . . , k−1}. Since DPAs can be complemented
by dualizing the acceptance condition, their sensing cost is preserved under complementa-
tion, so reasoning about the complemented DPA is sound. For 0 ≤ i ≤ k, a cycle in A is
called an i-loop if the maximal rank along the cycle is i. For 0 ≤ i ≤ j ≤ k, an [i, j]-flower
is a state q` ∈ Q such that for every i ≤ r ≤ j, there is an r-loop that goes through q`.

The following is an adaptation of a result from [12] to strongly connected DPAs:

I Lemma 13. Consider a strongly-connected minimally-ranked DPA A = 〈Σ, Q, q0,∆, αA〉
with ranks {0, . . . , k}. Then, there is a DPA D = 〈Σ, Q, q0,∆, αD〉 such that all the following
hold.
1. For every state s ∈ Q, we have L(As) = L(Ds). In particular, A and D are equivalent.
2. There exists m ∈ N such that D has ranks {0, ..., 2m+ k} and has a [2m, 2m+k] flower.

Proof. We start with the following claim, whose proof appears in Appendix A.6.
I Claim 14. A does not have an equivalent DPA with ranks {1, . . . , k + 1}.

Now, [12] proves the lemma for A that needs not be strongly connected and has no
equivalent DPA with ranks {1, . . . , k+1}. There, the DPAD has ranks in {0, ..., 2m+ k + 1},
and has a [2m, 2m+ k]-flower q`. We argue that since A is strongly connected, D has only
ranks in {0, ..., 2m+ k}.

By [12], if there exists m ∈ N and a DPA D that recognizes L(A) and has a [2m, 2m +
k + 1]-flower, then L(A) cannot be recognized by a DPA with ranks {1, ..., k + 2}. Observe
that in this case, L(A) cannot be recognized by a DPA with ranks {0, ..., k} as well, as by
increasing the ranks by 2 we get a DPA with ranks {2, ..., k + 2}, contradicting the fact
L(A) cannot be recognized by a DPA with ranks in {1, ..., k + 2}. Hence, as A with ranks
{0, ..., k} does exist, the DPA D cannot have a [2m, 2m+ k + 1]-flower.

Now, in our case, the DPA A, and therefore also D, is strongly-connected. Thus, if D
has a state with rank 2m + k + 1, then the state q` is in the same component with this
state, and is therefore a [2m, 2m + k + 1] flower. By the above, however, D cannot have a
[2m, 2m+ k + 1] flower, implying that D has ranks in {0, ..., 2m+ k}. J J

Let A and D be as in Lemma 13, and q` be the [2m, 2m + k]-flower in D. Note that
A and D have the same structure and differ only in their acceptance condition. Let Ω =
{0, ..., 2m+ k}. For a word w ∈ Σ∗, let ρ = s1, s1, ..., sn be the run of D on w. If ρ ends

S. Almagor, D. Kuperberg, and O. Kupferman 9

in q`, we define the q`-loop-abstraction of w to be the rank-word abs(w) ∈ Ω∗ of maximal
ranks between successive visits to q`. Formally, let w = y0 ·y1 · · · yt be a partition of w such
that D visits the state q` after reading the prefix y0 · · · yj , for all 0 ≤ j ≤ t, and does not
visit q` in other positions. Then, abs(yi), for 0 ≤ i ≤ t, is the maximal rank read along yi,
and abs(w) = abs(y0) · abs(y1) · · · abs(yt). Recall that RL = 〈Σ, 〈L〉,∆L, [ε], α〉, where 〈L〉
are the equivalence classes of the right-congruence relation on L, thus each state [u] ∈ 〈L〉
is associated with the language u−1L of words w such that uw ∈ L. We define a function
ϕ : Q → 〈L〉 that maps states of A to languages in 〈L〉 by ϕ(q) = L(Aq). Observe that ϕ
is onto. We define a function γ : 〈L〉 → Q that maps languages in 〈L〉 to states of A by
arbitrarily choosing for every language u−1L ∈ 〈L〉 a state in ϕ−1(u−1L).

We define a sequence of words u2m, . . . , u2m+k ∈ Ω∗ as follows. The definition proceeds
by an induction. LetM = |Q|+1. First, u2m = (2m)M . Then, for 2m < i ≤ 2m+k, we have
ui = (i · ui−1)M−1 · i. For example, if m = 2 and |Q| = 2, then u4 = 444, u5 = 544454445,
u6 = 654445444565444544456, and so on. Let P be a DFA that accepts a (finite) word
w ∈ Σ∗ iff the run of D on w ends in q` and u2m+k is a suffix of abs(w), for the word
u2m+k ∈ Ω∗ defined above. In Appendix A.7 we describe how to construct P, essentially by
combining a DFA over that alphabet Ω that recognizes Ω∗ · u2m+k with a DFA with state
space Q × Ω that records the highest rank visited between successive visits to q` and thus
abstracts words in Σ∗.

We can now turn to the construction of the DPAs Bn. Recall that A = 〈Σ, Q, q0,∆, αA〉,
and let P = 〈Σ, QP , t0,∆P , {tacc}〉. For n ≥ 1, we define Bn = 〈Σ, Qn, 〈q0, t0〉,∆n, αn〉 as
follows. The states of Bn are Qn = (〈L〉 × {1, . . . , n}) ∪ (Q × (QP \ {tacc})), where tacc
is the unique accepting state of P. We refer to the two components in the union as the
RL-component and the D-component, respectively. The transitions of Bn are defined as
follows.

Inside the RL-component: for every transition 〈[u], a, [u′]〉 ∈ ∆L and i ∈ {1, . . . , n− 1},
there is a transition 〈([u], i), a, ([u′], i+ 1)〉 ∈ ∆n.
From the RL-component to the D-component: for every transition 〈[u], a, [u′]〉 ∈ ∆L,
there is a transition 〈([u], n), a, (γ([u′]), t0)〉 ∈ ∆n.
Inside the D-component: for every transitions 〈q, a, q′〉 ∈ ∆ and 〈t, a, t′〉 ∈ ∆P with
t′ 6= tacc, there is a transition 〈(q, t), a, (q′, t′)〉 ∈ ∆n.
From the D-component to the RL-component: for every transitions 〈q, a, q′〉 ∈ ∆ and
〈t, a, tacc〉 ∈ ∆P , there is a transition 〈(q, t), a, (ϕ(q′), 1)〉 ∈ ∆n.

The acceptance condition of Bn is induced by that of A. Formally αn(q, t) = αA(q), for
states (q, t) ∈ Q×QP , and αn([u], i) = 0 for states ([u], i) ∈ 〈L〉 × {1, . . . , n}.

RL, 1 RL, 2 RL, 3 RL, nD × P n

Figure 2 The DPA Bn.

The idea behind the construction of Bn is as follows. The automaton Bn stays in RL for
n steps, then proceeds to a state in D with the correct residual language, and simulates D
until the ranks corresponding to the word u2m+k have been seen. It then goes back to RL,
by projecting the current state of D onto its residual in 〈L〉. The bigger n is, the more time
a run spends in the RL-component, making RL the more dominant factor in the sensing
cost of Bn. As n tends to infinity, the sensing cost of Bn tends to that of RL. The technical
challenge is to define P in such a way so that even though the run spends less time in the D
component, we can count on the ranks visited during this short time in order to determine

10 Regular Sensing

whether the run is accepting. We are now going to formalize this intuition, and we start
with the most challenging part of the proof, namely the equivalence of Bn and A. The proof
is decomposed into the three Lemmas 15, 16, and 17.

I Lemma 15. Consider a word u ∈ Σ∗ such that the run of Bn on u reaches the D-component
in state 〈q, t〉. Then, L(Dq) = L(Aq) = u−1L.

Proof. We prove a stronger claim, namely that if the run of Bn on u ends in the RL-
component in a state 〈s, i〉, then s = [u], and if the run ends in the D-component in a
state 〈q, t〉, then L(Aq) = u−1L. The proof proceeds by induction on |u| and is detailed
in Appendix A.8. By Lemma 13, for every q ∈ Q, we have L(Aq) = L(Dq), so the claim
follows. J J

I Lemma 16. If the run of Bn on a word w ∈ Σω visits the RL-component finitely many
times, then w ∈ L iff w ∈ L(Bn).

Proof. Let u ∈ Σ∗ be a prefix of w such that the run of Bn on w stays forever in the
D-component after reading u. Let (q, t) ∈ Qn be the state reached by Bn after reading
u. By Lemma 15, we have L(Aq) = u−1L. Since the run of Bn from (q, t) stays in the
D-components where it simulates the run of A from q, then Aq accepts the suffix w|u| iff
B(q,t)
n accepts w|u|. It follows that w ∈ L iff w ∈ L(Bn). J J

The complicated case is when the run of Bn on w does visit the RL-component infinitely
many times. This is where the special structure of P guarantees that the sparse visits in
the D-component are sufficient for determining acceptance.

I Lemma 17. If the run of Bn on a word w ∈ Σω visits the RL-component infinitely many
times, then w ∈ L iff w ∈ L(Bn).

Proof. Let τ = s1, s2, s3, . . . be the run of Bn on w and let ρ = q1, q2, q3 . . . be the run of
A on w. We denote by τ [i, j] the infix si, ..., sj of τ . We also extend αD to (infixes of) runs
by defining αD(τ [i, j]) = αD(si), ..., αD(sj). For a rank-word u ∈ Ω∗, we say that an infix
τ [i, j] is a u-infix if αD(τ [i, j]) = u.

If v = τ [i, j], for some 0 ≤ i ≤ j, is a part of a run of D that consists of loops around
q`, we define the loop type of v to be the word in Ω∗ that describes the highest rank of each
simple loop around q` in v. An infix of τ whose loop type is ui for some 2m ≤ i ≤ 2m+ k

is called a ui-loop-infix.
By our assumption, τ contains infinitely many u2m+k-infixes. Indeed, by the definition

of P, otherwise τ get trapped in the D-component. We proceed by establishing a connection
between ui-loop-infixes of τ and the corresponding infixes of ρ, for all 2m ≤ i ≤ 2m+ k.

Let i ∈ {2m, . . . , 2m + k}, and consider a ui-loop-infix, By the definition of ui, such a
ui-loop-infix consists of a sequence of M = |Q| + 1 i-loops in τ , with loops of lower ranks
between them. We can write w = xvw′, where v = w[c, d] is the sub word that corresponds
to the ui-loop-infix. Let u′i = αA(ρ[c, d]) be the ranks of ρ in the its part that corresponds
to v.

By our choice of M , we can find two indices c ≤ j < l ≤ d such that the pairs 〈(qj , t), q′j〉
and 〈(ql, t′), q′l〉 reached by (τ, ρ) in indices j and l, respectively, satisfy qj = ql = q` and
q′j = q′l. Additionally, being a part of the run on a ui-loop-infix, the highest rank seen
between qj and ql in τ is i. We write v = v1v2v3, where v1 = v[1, j], v2 = v[j + 1, l], and
v3 = v[l + 1, |v|]. Thus, the loop type of v2 is in (iui−1)+i, with the convention u2m−1 = ε.

S. Almagor, D. Kuperberg, and O. Kupferman 11

Consider the runs µ and η of Dqj and of Aq′j on vω2 , respectively. These runs are loops
labeled by v2, where the highest rank in µ is i. By Lemma 15, L(Dqj) = L(Dq′j) = L(Aq′j),
so the highest rank in η must have same parity (odd or even) as i.

Thus, we showed that for every i ∈ {2m, ..., 2m+ k}, and for every ui-loop-infix v of τ ,
there is an infix of v with loop-type in (iui−1)+i, such that the infix of ρ corresponding to
v has highest rank of same parity as i.

We want to show that rank k is witnessed on ρ during every u2m+k-infix of τ . Assume
by way of contradiction that this is not the case. This means that there is some u2m+k-infix
v′ in τ such that all ranks visited in ρ along v′ are at most k − 2. Indeed, since the highest
rank has to be of the same parity as 2m + k, which has the same parity as k, it cannot
be k − 1. By the same argument, within v′ there is an infix v′′ of u2m+k−1 of the form
((2m+ k − 1)(u2m+k−2))+(2m+ k− 1) in which the highest rank in ρ is of the same parity
as k−1. As v′′ is also an infix of v′, the highest rank in ρ along v′′ is at most k−2. Thus, the
highest rank along v′′ is at most k − 3. By continuing this argument by induction down to
0, we reach a contradiction (in fact it is reached at level 1), as no rank below 0 is available.

We conclude that the run ρ witnesses a rank k in any uk-infix of τ . Since τ contains
infinitely many uk-infixes, then ρ contains infinitely many ranks k, and, depending on the
parity of k, either both ρ and τ are rejecting or both are accepting.

This concludes the proof that w ∈ L iff w ∈ L(Bn). J J

We proceed to show that the sensing cost of the sequence of DPAs Bn indeed converges
to that of RL.

I Lemma 18. limn→∞ scost(Bn) = scost(RL).

Proof. Since D is strongly connected, then q` is reachable from every state in D. Also, since
q` is a [2m, 2m + k]-flower, we can construct a sequence of loops around q` whose ranks
correspond to the word u2m+k. Thus, tacc is reachable from every state in the D-component.
This implies that Bn is strongly connected, and therefore, a run of Bn is expected to traverse
both components infinitely often, making the RL-component more dominant as n grows,
implying that limn→∞ scost(Bn) = scost(RL). Formalizing this intuition involves a careful
analysis of Bn’s Markov chain, as detailed in Appendix A.11. J J

Lemmas 16, and 17 put together ensure that for strongly connected automata, we have
that L(Bn) = L, so with Lemma 18, we get scost(L) = scost(RL).

It is left to remove the assumption about A being strongly connected. The proof is
detailed in Appendix A.12, and uses the above result on each ergodic component of A.
I Remark 19. All our results can be easily extended to a setting with a non-uniform dis-
tribution on the letters given by any Markov chain, or with a different cost for each input
in each state. We can also use a decision tree to read the inputs instead of reading them
simulatenously, defining for instance a cost of 1.5 if the state starts by reading a, then if a
is true it also reads b. J

5 Directions for Future Research

Regular sensing is a basic notion, which we introduced and studied for languages of finite and
infinite words. In this section we discuss possible extensions and variants of our definition
and contribution.

Open systems: Our setting assumes that all the signals in P are generated by the
environment and read by the automaton. In the setting of open systems, we partition P

12 Regular Sensing

into a set I of input signals, generated by the environment, and a set O of output signals,
generated by the system. Then, we define the sensing cost of a specification as the minimal
sensing cost required for a transducer that realizes it, where here, sensing is measured only
with respect to the signals in I. Also, the transducer does not have to generate all the
words in the language – it only has to associate a computation in the language with each
input sequence. These two differences may lead to significantly different results than those
presented in the paper.

Trade-off between sensing and quality: The key idea in the proof of Theorem 12
is that when we reason about languages of infinite words, it is sometimes possible to delay
the sensing and only sense in “sparse” intervals. In practice, however, it is often desirable to
satisfy eventualities quickly. This is formalized in multi-valued formalisms such as LTL with
future discounting [1], where formulas assign higher satisfaction values to computations
that satisfy eventualities fast. Our study here suggests that lower sensing leads to lower
satisfaction values. An interesting problem is to study and formalize this intuitive trade-off
between sensing and quality.

Transient cost: In our definition of sensing, transient states are of no importance.
Consequently, for example, all safety languages have sensing cost 0, as the probability of a
safety property not being violated is 0, and once it is violated, no sensing is required. An
alternative definition of sensing cost may take transient states into an account. One way to
do it is to define the sensing cost of a run as the discounted sum

∑
i≥0 2−i · sensed(|qi|) of

the sensing costs of the states q0, q1, ... it visits.
Beyond regular: Our definition of sensing cost can be adapted to more complex models,

such as pushdown automata or Turing machines. It would be interesting to see the trade-off
between sensing and classical complexity measures in such models.

References
1 S. Almagor, U. Boker, and O. Kupferman. Discounting in LTL. In Proc. 20th TACAS,

LNCS 8413, pages 424-439. Springer, 2014.
2 G. Avni and O. Kupferman. When does abstraction help? Information Processing Letters,

113:901–905, 2013.
3 K. Chatterjee and R. Majumdar. Minimum attention controller synthesis for ω-regular

objectives. In FORMATS, pages 145–159, 2011.
4 K. Chatterjee, R. Majumdar, and T. A. Henzinger. Controller synthesis with budget con-

straints. In Proc. 11th HSCC, LNCS 4981, pages 72–86. Springer, 2008.
5 D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–1306, 2006.
6 C. Grinstead and J. Laurie Snell. 11:markov chains. In Introduction to Probability. American

Mathematical Society, 1997.
7 G. Kindler. Property Testing, PCP, and Juntas. PhD thesis, Tel Aviv University, 2002.
8 O. Kupferman and M.Y. Vardi. Church’s problem revisited. The Bulletin of Symbolic

Logic, 5(2):245 – 263, 1999.
9 E. Kushilevitz and N. Nisan. Communication complexity. Cambridge Univ. Press, 1997.
10 C. Mauduit and A. Sárköz. On finite pseudorandom binary sequences. i. measure of

pseudorandomness, the legendre symbol. Acta Arith., 82(4):365–377, 1997.
11 S. Muthukrishnan. Theory of data stream computing: where to go. In Proc. 30th PODS,

pages 317–319, 2011.
12 D. Niwinski and I. Walukiewicz. Relating hierarchies of word and tree automata. In

STACS, LNCS 1373. Springer, 1998.
13 S. Schewe. Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-Complete.

In Proc. 30th FSTTCS, LIPIcs 8, pages 400–411, 2010.

S. Almagor, D. Kuperberg, and O. Kupferman 13

A Details and Proofs

A.1 Proof of Lemma 3

Let q ∈ Q, and consider a random infinite run r inMA. If q is transient, then it is easy to see
that limm→∞ 1

mEm(q) = 0 = π(q), because with probability 1, the state q does not appear
after some point in r. Otherwise, let C ∈ Ce be the ergodic SCC of q. The probability that r
reaches C is given by ρ(C). By the law of total expectation, and since q is reachable only if r
reaches C, we have that Em(q) = ρ(C)ECm−t where t is the expected time by which r reaches
C. Thus, limm→∞

Em(q)
m = ρ(C) limm→∞

EC
m−t

m = ρ(C) limm→∞
EC

m

m = ρ(C)πC(q). J

A.2 Proof of Theorem 4

By Lemma 3, we have π(q) = limm→∞
Em(q)
m , where Em(q) is the expected number of

occurrences of q in a random m-step run. This can be restated in our case as π(q) =
limm→∞ 1

m|Σ|m
∑
w:|w|=m Occw(q), where Occw(q) is the number of occurrences of q in the

run of A on w. By definition, scost(A) = limm→∞ |Σ|−m
∑
w:|w|=m scostA(w), and also

scostA(w) =
∑
q∈Q scost(q) ·Occw(q). From this, we get

scost(A) = lim
m→∞

|Σ|−m
∑

w:|w|=m

∑
q∈Q

scost(q) ·Occw(q)

=
∑
q∈Q

scost(q) · lim
m→∞

|Σ|−m
∑

w:|w|=m
Occw(q) =

∑
q∈Q

scost(q) · π(q).

J

A.3 Calculating the SCC-reachability distribution

The stationary distribution πC of each ergodic SCC C can be computed in polynomial time
by solving a system of linear equations.

We show that the SCC-reachability distribution ρ : C → [0, 1] can also be calculated
in polynomial time.First, if the initial state q0 is in an ergodic SCC, the result is trivial.
Otherwise, we proceed as follows. We associate with A the Markov chain M ′A, in which we
contract each ergodic SCC of A to a single state. That is, M ′A is obtained from MA by
replacing each C ∈ Ce by a single state qC . Notice that M ′A is an absorbing Markov chain,
thus it reaches a sink state with probability 1. Indeed, the probability of reaching an ergodic
SCC in MA is 1, and every SCC in MA becomes a sink state in M ′A.

By indexing the rows and columns in the transition matrix of M ′A such that transient

states come before ergodic states, we can put the matrix in a normal form
(
T E

0 I

)
, where

T describes the transitions between transient states, E from transient to ergodic states, and
I is the identity matrix of size |Ce|. Note that, indeed, there are no transitions from ergodic
states to transient ones, which explains the 0 matrix in the bottom left, and that I captures
the fact the ergodic states are sinks. By [6], the entry at coordinates (qt, qC) in the matrix
B = (I − T)−1E is the probability of reaching the sink qC starting from the transient state
qt. Therefore, for every C ∈ Ce, we have that ρ(C) = B(q0,qC).

A.4 Examples of sensing costs of automata

Let P = {a, b}. Consider the DFA A1 appearing in Figure 3. Note that L(A1) = (True)∗ ·
a · b · (True)∗. It is easy to see that sensed(q0) = {a}, sensed(q1) = {b}, and sensed(q2) = ∅.

14 Regular Sensing

Accordingly, scost(q0) = scost(q1) = 1 and scost(q2) = 0. Since the state q2 forms the only
ergodic SCC, the limiting distribution on the states of A is π(q0) = π(q1) = 0 and π(q2) = 1.
Hence, scost(A1) = 0.

q0 q1 q2
a

¬b

¬a
b

true

Figure 3 The DFA A1.

Consider now the DFA A2, appearing in Figure 4, with L(A2) = (True)∗ · a · b. Here,
sensed(q0) = {a}, sensed(q1) = {a, b}, and sensed(q2) = {a}. Accordingly, scost(q0) =
scost(q2) = 1 and scost(q2) = 2. Since A2 is strongly connected, its limiting distribution is
its unique stationary distribution, which can be calculated by solving the following system
of equations, where xi corresponds to π(qi):

x0 = 1
2x0 + 1

4x1 + 1
2x2. x2 = 1

2x1.
x1 = 1

2x0 + 1
4x1 + 1

2x2. x0 + x1 + x2 = 1.
Accordingly, π(q0) = π(q1) = 2

5 and π(q2) = 1
5 . We conclude that the sensing cost of A2 is

1 · 2
5 + 2 · 2

5 + 1 · 1
5 = 7

5 .

q0, 2
5 q1, 2

5 q2, 1
5

¬a/ 1
2 a ∧ ¬b/ 1

4

¬a ∧ ¬b/ 1
4

a/ 1
2 b/ 1

2

a/ 1
2

¬a/ 1
2

Figure 4 The DFA A2 and its corresponding Markov chain.

A.5 Proof that the cost of the residual automaton is necessary

We prove that for every DPA A with L(A) = L, we have that scost(A) ≥ scost(RL).
Consider a word w ∈ Σω and a prefix u ∈ Σ∗ of w. After reading u, the DPA RL reaches
the state [u] and the DPA A reaches a state q with L(Aq) = u−1L. As in the case of finite
words, for every state q ∈ Q such that L(Aq) = u−1L, it holds that sensed([u]) ⊆ sensed(q),
implying that scost(q) ≥ scost([u]). Now, since this holds for all prefixes u of w, it follows
that scostA(w) ≥ scostRL

(w). Finally, since the latter holds for every word w ∈ Σω, it
follows that scost(A) ≥ scost(RL).

Note that the arguments in the proof are independent of the acceptance condition of A
and apply also to stronger acceptance conditions, such as the Muller acceptance condition.

A.6 Proof of Claim 14

Assume by contradiction that there is a DPA B with ranks {1, . . . , k + 1} that recognizes
L(A). Let u ∈ Σ∗ be such that the run of B on u ends in an ergodic SCC C of B. Since A
is strongly connected, there is a word v ∈ Σ∗ such that the run of A on the word uv ends
in the initial state of A. That is, (uv)−1L = L. Since L(B) = L(A), this implies that the
run of B on uv ends in a state q such that L(Bq) = L. Since after reading u, the run is in
the ergodic component C, we have q ∈ C. Thus, Bq is a strongly connected DPA equivalent

S. Almagor, D. Kuperberg, and O. Kupferman 15

to A. By our assumption, L(A) cannot be recognized by a DPA with ranks in {1, ..., k},
and thus the ranks in Bq are {1, ..., k + 1}. In particular, there is a state q′ in Bq with rank
k + 1.

Let s be a state in A with rank k. Let u0 ∈ Σ∗ be such that the run of A on u0 reaches
s, and let u1 ∈ Σ∗ be such that the run of Bq on u0u1 reaches q′ (recall that Bq is strongly
connected). We can construct in this manner an infinite word w = u0u1u2 · · · such that for
all i ≥ 0, the run of A on u0, ..., u2i reaches s and the run of Bq on u0, ..., u2i+1 reaches q′.
Thus, the maximal rank in the run of A (resp. Bq) on w is k (resp. k + 1). However, k
and k + 1 have different parity, so L(A) 6= L(Bq), which contradicts our assumption. We
conclude that L(A) is not recognizable by a DPA with ranks {1, ..., k + 1}.

A.7 The construction of the auxiliary DFA P

Let H2m+k = 〈Ω, Q′, q′0,∆′, α′〉 be the minimal DFA that recognizes the language Ω∗ ·u2m+k.
We can define H2m+k so that α′ contains a single state q′acc. Indeed, there is a single
accepting Myhill-Nerode class of the language Ω∗ · u2m+k.

Let H be the DFA with state space Q × Ω and alphabet Σ that maintains in its state
the highest rank seen since the last occurrence of q` (or since the beginning of the word, if
no q` has been seen) in the run of D on the word. Thus, H is in state 〈q, i〉 iff the highest
rank that was visited by D since the last visit to q` is i. Observe that simulating H when
D is in an r-loop that started from q`, means that the next visit to q` will make H reach
the state 〈q`, r〉.

Formally, H = 〈Σ, Q× Ω, 〈q0, 0〉,∆H, Q× Ω〉, where ∆H is defined as follows.
For every state 〈q, i〉 where q 6= q`, and for every σ ∈ Σ, we have 〈〈q, i〉, σ, 〈s,max {i, i′}〉〉 ∈
∆H where s is such that 〈q, σ, s〉 ∈ ∆, and i′ = αD(s).
For a state 〈q`, i〉 and for σ ∈ Σ, we have 〈〈q`, i〉, σ, 〈s, i′〉〉 ∈ ∆H where s is such that
〈q, σ, s〉 ∈ ∆, and i′ = αD(s).

We obtain P by composing H with H2m+k as follows. In every step of a run of D, the
DFA P advances in the DFA H, while the DFA H2m+k only advances when we visit q`, and
it advances according to the highest rank stored in H.

Formally, P = 〈Σ, QP , t0,∆P , {tacc}〉, where QP = Q × Ω × Q′, t0 = 〈q0, 0, q′0〉, tacc =
〈q`, 2m+ k, q′acc〉 and the transition relation is defined as follows. For every state 〈q, i, s〉 ∈
qP and letter σ ∈ Σ, we have 〈〈q, i, s〉, σ, 〈q′, i′, s′〉〉 ∈ ∆P , where 〈q′, i′〉 is such that
〈〈q, i〉, σ, 〈q′, i′〉〉 ∈ ∆H, and s′ is such that 〈s, i′, s′〉 ∈ ∆′ if q′ = q`, while s′ = s if q 6= q`.

A.8 Details of the proof of Lemma 15

We complete the proof by induction.
For u = ε, the claim is trivial, as Bn starts in 〈q0, t0〉. Consider the word u ·σ for u ∈ Σ∗

and σ ∈ Σ. By the induction hypothesis, if the run of Bn on u ends in an RL component in
state 〈s, i〉, then s = [u]. If i < n, then, by the definition ofRL, the next state is 〈[u·σ], i+1〉,
we are done. If i = n then the next state is 〈γ([u · σ]), t0〉. By the definition of γ, we have
L(Aγ([u·σ])) = (u · σ)−1L, so we are done.

We continue to the case the run of Bn on u ends in the D-component. If the run ends
in a state 〈p, t〉 such that 〈t, σ, tacc〉 /∈ ∆P , then, by the induction hypothesis, we have
that L(Ap) = u−1L. Reading σ, we move to a state 〈p′, t′〉 such that 〈p, σ, p′〉 ∈ ∆, thus
L(Ap′) = (u · σ)−1L, and we are done. Otherwise, 〈t, σ, tacc〉 ∈ ∆P and the next state of Bn
is 〈ϕ(p′), 1〉. By the definition of ϕ, we have ϕ(p′) = [u · σ], and we are done.

16 Regular Sensing

A.9 On Monotonicity of Sensing

The example in Remark 2 suggests that there is a trade-off between guessing and sensing.
Consider a DFA A = 〈Σ, Q, q0, δ, α〉, with Σ = 2P . For a state q ∈ Q and a signal p ∈ P , let
Aq↓p be the NFA obtained from A by ignoring p in q. Thus, in state q, the NFA Aq↓p guesses
the value of p and proceeds to all the successors that are reachable with some value. Note
that the guess introduces nondeterminism. Formally, Aq↓p = 〈Σ, 2Q, {q0}, δ′, α′〉, where for
every state T ∈ 2Q and letter S ∈ 2P , we define δ′(T, S) =

⋃
t∈T δ(t, S) if q 6∈ T , and

δ′(T, S) = δ(q, S \ {p}) ∪ δ(q, S ∪ {p}) ∪⋃t∈T\{q} δ(t, S) if q ∈ T . Also, a state T ⊆ Q is in
α′ iff T ∩ α 6= ∅. It is easy to see that L(A) ⊆ L(Aq↓p). Since Aq↓p is obtained from A by
giving up some of its sensing, it is tempting to think that scost(L(Aq↓p)) ≤ scost(L(A)). As
we now show, however, sensing is not monotone. For two languages L and L′, we say that
L′ is an abstraction of L if there is a DFA A such that L(A) = L and there is a state q and
a signal p of A such that L′ = L(Aq↓p).

I Theorem 20. Sensing is not monotone. That is, there is a language L and an abstraction
L′ of L such that scost(L) ≤ scost(L′).

Proof. Let P = {a, b, c}. Consider the language L = a · True∗ · b+ (¬a) · True∗ · c. It is not
hard to see that scost(L) = 1. Indeed, a DFA for L has to sense a in its initial state and
then has to always sense either b (in case a appears in the first letter) or c (otherwise).

Giving up the sensing of a in the initial state of a DFA for L we end up with the language
L′ = (True)+ · (b ∨ c). It is not hard to see that scost(L′) = 2. Indeed, every DFA for L′
has to almost always sense both b and c. J J

We conclude that replacing a sensor with non-determinism may actually result in a
language for which we need more sensors. This corresponds to the known fact that ab-
straction of automata may result in bigger (in fact, exponentially bigger) DFAs [2]. Also,
while the above assumes an abstraction that over-approximates the original language, a dual
argument could show that under-approximating the language (that is, defining Aq↓p as a
universal automaton) may result in a language with higher sensing cost.

A.10 Operations on DFAs and Their Sensing Cost

In this section we study the effect of actions on DFAs on their sensing cost. We start
with complementation. For every regular language L, a DFA for comp(L) = Σ∗ \ L can be
obtained from a DFA for L by complementing the set of accepting states. In particular, this
holds for RL, implying the following.

I Lemma 21. For every regular language L we have that scost(L) = scost(comp(L)).

Next, we consider the union of two regular languages.

I Lemma 22. For every regular languages L1, L2 ⊆ (2P)∗, we have scost(L1 ∪ L2) ≤
scost(L1) + scost(L2).

Proof. Consider the minimal DFAs A1 = 〈2P , Q1, δ1, q1
0 , α

1〉 and A2 = 〈2P , Q2, δ2, q2
0 , α

2〉
for L1 and L2, respectively. Let B = 〈2P , Q1×Q2, δ, (q1

0 , q
2
0), (α1×Q2)∪ (Q1×α2)〉 be their

product DFA. Note that L(B) = L1∪L2. We claim that for every state 〈q, s〉 ∈ Q1×Q2, we
have that sensed(〈q, s〉) ⊆ sensed(q) ∪ sensed(s). Indeed, if p /∈ sensed(q) ∪ sensed(s), then
for every set S ⊆ P \{p}, it holds that δ1(q, S) = δ1(q, S∪{p}) and δ2(s, S) = δ2(s, S∪{p}).
Thus, δ(〈q, s〉, S) = δ(〈q, s〉, S ∪ {p}), so p /∈ sensed〈q, s〉. We thus have that scost(〈q, s〉) ≤
scost(q) + scost(s).

S. Almagor, D. Kuperberg, and O. Kupferman 17

It follows that for every word w ∈ (2P)∗, we have that scostB(w) ≤ scostA1(w) +
scostA2(w). Indeed, in every state in the run of B on w, the sensing is at most the sum of
the sensings in the corresponding states in the runs of A1 and A2 on w. Since this is true
for every word in Σ∗, then taking the limit of the average cost yields the result. J J

We now consider the concatenation of two languages. The following lemma shows that
the sensing level may increase from 0 to 1 when concatenating languages.
I Lemma 23. There are languages L1, L2 ⊆ Σ∗ such that scost(L1) = scost(L2) = 0, yet
scost(L1 · L2) = 1.
Proof. Let P = {a}, and consider the languages L1 = (2P)∗ and L2 = {{a}}. It is not hard
to see that scost(L1) = scost(L2) = 0. Indeed, a DFA for L1 consists of a single accepting
sink with no sensing, and a DFA for L2 has a single ergodic component, which is a rejecting
sink with no sensing. On the other hand L1 ·L2 consists of all words that end with {a} and
thus a DFA for it has to always sense a. J J

A.11 Formal proof of Lemma 18

Consider the Markov chain that corresponds to Bn, and let Tn be its transition matrix. For
a vector v = (v1, . . . , vm), let ‖v‖ =

∑m
i=1 vi. The sensing cost of Bn is computed using the

limiting distribution πn of Bn. Since Bn is strongly connected, it has a unique stationary
distribution. Thus πn is obtained as a solution of the equation πnTn = πn, subject to
the constraint ‖πn‖ = 1. We denote by xn = (xn,1, . . . , xn,d) the sub-vector of πn that
corresponds to the D-component, and denote by yn,i the sub-vector that corresponds to the
i-th RL-component. For every 1 ≤ i < n, it is easy to see that ‖yn,i‖ = ‖yn,i+1‖. Indeed,
all the transitions from the i-th copy of RL are to the (i + 1)-th copy. Thus, ‖yn,i‖ is
independent of i. Let an = ‖yn,1‖ ≥ 0 and bn = ‖xn‖ ≥ 0. Observe that for every n, we
have that nan + bn = 1, so in particular, limn→∞ an = 0.

Let ε > 0. By the definition of P, we always enter the first RL-component in the state
[q`] of RL – the state corresponding to L(Aq`). Let τ0 be the distribution over the states of
RL in which [q`] is assigned probability 1 and the other states of RL are assigned 0, and let
θ = (θ1, . . . , θl) be the unique stationary distribution of RL. Let R be the matrix associated
with the Markov chain of RL, and let τi = τ0R

i for every i ≥ 1. By [6], there exists n0 such
that for all index i ≥ n0 and 1 ≤ j ≤ l, we have that |τi,j − θj | ≤ ε. Note that for all n and
i, it holds that yn,i = τi.

Let {q1, . . . , qd} be the states in the D-component. Since P is strongly connected, then
for every 1 ≤ i, j ≤ d there is a path from qi to qj with at most d−1 transitions. Since there
are at most |Σ| edges leaving each state, the probability of taking each edge along such a
path is at least µ = 1

|Σ| . Therefore, the probability of reaching qj from qi is at least µd−1.
Consider the maximal entry in xn (w.l.o.g xn,1). It holds that xn,1 ≥ ‖xn‖

d = bn

d . Therefore,
for all 1 ≤ j ≤ d, we have xn,j ≥ µd−1xn,1 ≥ µd−1

d bn.
Recall that tacc is reachable from all the states in the D-component. Therefore, there is

at least one transition from some state qj of the D-component to the first RL-component.
This means that an ≥ µ · xn,j ≥ µd

d bn, implying that bn ≤ µ−d · d · an, which tends to 0
when n tends to ∞.

We now consider the cost of Bn, for n ≥ n0. Clearly, the maximal cost of a state is |P |.
Let cj be the cost of the state indexed j in RL, and let τi = (τi,1 . . . , τi,l). Then,

scost(Bn) ≤ bn|P |+ n0an|P |+ an
∑n
i=n0

∑d
j=1 τi,jcj

≤ bn|P |+ n0an|P |+ an
∑n
i=n0

∑d
j=1(θj + ε)cj .

18 Regular Sensing

Therefore, when n→∞, as an → 0 and bn → 0, we get scost(Bn) ≤ (n−n0)an
∑d
j=1 θjcj +

O(ε)+o(1). But we know nan+bn = 1, and bn → 0, so nan → 1, and therefore (n−n0)an →
1. We get scost(Bn) ≤ scost(RL) +O(ε) + o(1). Furthermore, by Lemmas 16 and 17, for all
n we have L(Bn) = L(A), thus scost(RL) ≤ scost(Bn).

Since the above holds for all ε > 0, we conclude that limn→∞ scost(Bn) = scost(RL).

A.12 Proof of the non-SCC case of Theorem 12

Assume then that A is not a strongly connected DPA, and let C1, . . . , Cl be its ergodic
SCCs. For each 1 ≤ i ≤ l and q ∈ Ci, let Lqi the language recognizing by Ci, with q as
initial states. Remark that the residual automata Rqi of languages Lqi only differ in their
initial states. We call Ri the common automaton where no initial state is defined. For each
i ∈ [1, l] and q ∈ Ci, we have scost(Lqi) = scost(Ri).

We can now perform the above construction on Ri, which will work simultaneously for
all initial states. This yields automata (B1,n, . . . ,Bl,n)n≥1 with no initial state specified,
such that for each i ∈ [1, l]:
1. limn→∞ scost(Bi,n) = scost(Ri)
2. For all q ∈ Ci and n ≥ 1, there is a state qn in Bi,n such that Bi,n with qn as initial state

recognizes exactly Lqi .

Let An be the DPA obtained from A by replacing each SCC Ci by Bi,n, with the entry
points to Bi,n being chosen to preserve the correct residual language. More formally, if a
transition (p, a, q) of A will be replaced by (p, a, qn) in An, where qn is as defined in the
second item above.

This construction ensures that for all n ≥ 1, we have L(An) = L(A). Indeed, if a word
entered a component Ci in A, it will now enter a component Bi,n in An, in a state qn that
matches the correct residual language. Then, the correctness of the construction in the SCC
case guarantees that the word is accepted if and only if it is in L.

It remains to show that limn→∞ scost(An)→ scost(RL), therefore witnessing the wanted
result: scost(L) = scost(RL).

Let ρ (resp. ρn) be the SCC-reachability distribution of A (resp. An). Recall that
the ergodic components (Ci)1≤i≤l in A have been replaced by (Bi,n)1≤i≤l in An, and the
transient component have been left unchanged. Thefore, for every 1 ≤ i ≤ l and n ≥ 1, we
have that ρ(Ci) = ρn(Bi,n). By Theorem 4, we obtain scost(An) =

∑l
i=1 ρ(Ci)scost(Bi,n).

When n tends to ∞, we get
∑l
i=1 ρ(Ci)scost(Ri) (by item 1 above).

Finally, let AR be the DPA obtained from A by replacing each SCC Ci by its residual
automaton Ri, again keeping the entry points to Ri consistent with residuals (here there is
no choice: the states of Ri are exactly the possible residuals).

Since the SCC-reachability distribution inA andAR coincide, it follows that scost(AR) =∑l
i=1 ρ(Ci)scost(Ri) = limn→∞ scost(An). It remains to show that AR has same cost as

the residual automaton RL of L, and we can conclude limn→∞ scost(An) = scost(RL), and
finally scost(L) ≤ scost(RL). Since the opposite inequality is always true by Appendix A.5,
we get scost(L) = scost(RL)

I Lemma 24. scost(AR) = scost(RL).

Proof. Let D1, . . . , Dk be the ergodic SCCs of RL. For each i ∈ [1, l], and q ∈ CI , there
must be jqi such that Lqi is a state of Djq

i
. Moreover, jqi does not depend on q, since both

the Ci and the Dj are strongly connected. Therefore, each Ci can be mapped to some Dji

such the states of Dji are exactly the Lqi for q ∈ Ci. Actually for each i, the automata Ri
and Dji

are exactly the same, if initial states are omitted.

S. Almagor, D. Kuperberg, and O. Kupferman 19

Let ρ be the SCC-reachability distribution of A (or equivalently AR) and σ the one of
RL. Because the residual languages have to match in A and RL, for each j ∈ [1, k], we have
σ(Dj) =

∑
ji=j ρ(Ci). Therefore, scost(RL) =

∑k
j=1 σ(Dj)scost(Dj) =

∑k
j=1

∑
ji=j ρ(Ci)scost(Dj) =∑l

i=1 ρ(Ci)scost(Ri) = scost(AR). J J

	Introduction
	Preliminaries
	The Sensing Cost of Regular Languages of Finite Words
	The Sensing Cost of -Regular Languages
	Characterizing scost(L) by the residual automaton for L

	Directions for Future Research
	Details and Proofs
	Proof of Lemma 3
	Proof of Theorem 4
	Calculating the SCC-reachability distribution
	Examples of sensing costs of automata
	Proof that the cost of the residual automaton is necessary
	Proof of Claim 14
	The construction of the auxiliary DFA P
	Details of the proof of Lemma 15
	On Monotonicity of Sensing
	Operations on DFAs and Their Sensing Cost
	Formal proof of Lemma 18
	Proof of the non-SCC case of Theorem 12

