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Abstract In the classical synthesis problem, we are given a specification ψ over sets
of input and output signals, and we synthesize a finite-state transducer that realizes ψ:
with every sequence of input signals, the transducer associates a sequence of output
signals so that the generated computation satisfies ψ. In recent years, researchers
consider extensions of the classical Boolean setting to a multi-valued one. We study a
multi-valued setting in which the truth values of the input and output signals are taken
from a finite lattice, and so is the satisfaction value of specifications. We consider
specifications in latticed linear temporal logic (LLTL). In LLTL, conjunctions and
disjunctions correspond to the meet and join operators of the lattice, respectively, and
the satisfaction values of formulas are taken from the lattice too. The lattice setting
arises in practice, for example in specifications involving priorities or in systems with
inconsistent viewpoints.

We solve the LLTL synthesis problem, where the goal is to synthesize a trans-
ducer that realizes the given specification in a desired satisfaction value.

For the classical synthesis problem, researchers have studied a setting with in-
complete information, where the truth values of some of the input signals are hidden
and the transducer should nevertheless realize ψ. For the multi-valued setting, we in-
troduce and study a new type of incomplete information, where the truth values of
some of the input signals may be noisy, and the transducer should still realize ψ in the
desired satisfaction value. We study the problem of noisy LLTL synthesis, as well as
the theoretical aspects of the setting, like the amount of noise a transducer may toler-
ate, or the effect of perturbing input signals on the satisfaction value of a specification.
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We prove that the noisy-synthesis problem for LLTL is 2EXPTIME-complete, as is
traditional LTL synthesis.

1 Introduction

Synthesis is the automated construction of a system from its specification. The basic
idea is simple and appealing: instead of developing a system and verifying that it ad-
heres to its specification, we would like to have an automated procedure that, given
a specification, constructs a system that is correct by construction. The first formu-
lation of synthesis goes back to Church [14]. The modern approach to synthesis was
initiated by Pnueli and Rosner, who introduced LTL (linear temporal logic) synthesis
[31]: We are given an LTL formula ψ over sets I and O of input and output signals,
and we synthesize a finite-state system that realizes ψ. At each moment in time, the
system reads a truth assignment, generated by the environment, to the signals in I ,
and it generates a truth assignment to the signals in O. Thus, with every sequence
of inputs, the transducer associates a sequence of outputs, and it realizes ψ if all the
computations that are generated by the interaction satisfy ψ. Synthesis has attracted
a lot of research and interest [37].

In recent years, researchers have considered extensions of the classical Boolean
setting to a multi-valued one, where the atomic propositions are multi-valued, and so
is the satisfaction value of specifications. The multi-valued setting arises directly in
systems in which the designer can give to the atomic propositions rich values, ex-
pressing, for example, energy consumption, waiting time, or different levels of confi-
dence [8,1], and arises indirectly in probabilistic settings, systems with multiple and
inconsistent view-points, specifications with priorities, and more [26,18,4]. Adjust-
ing the synthesis problem to this setting, one works with multi-valued specification
formalisms. In such formalisms, a specification ψ maps computations in which the
atomic propositions take values from a domainD to a satisfaction value inD. For ex-
ample, ψ may map a computation in ({0, 1, 2, 3}{p})ω to the maximal value assigned
to the (multi-valued) atomic proposition p during the computation. Accordingly, the
synthesis problem in the multi-valued setting gets as input a specification ψ and a
predicate P ⊆ D of desired values, and seeks a system that reads assignments in DI ,
responds with assignments in DO, and generates only computations whose satisfac-
tion value is in P . The synthesis problem has been solved for several multi-valued
settings [6,7,1].

A different extension of the classical synthesis framework considers settings in
which the system has incomplete information about its environment. In early work
on incomplete information, the system can read only a subset of the signals in I and
should still generate only computations that satisfy the specification, which refers to
all the signals in I ∪ O [20,32,23,9,11]. The setting is equivalent to a game with
incomplete information, extensively studied in [33]. As shown there, the common
practice in handling incomplete information is to move to an exponentially-larger
game of complete information, where each state corresponds to a set of states that are
indistinguishable by a player with incomplete information in the original game.
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More recent work on synthesis with incomplete information studies richer types
of incomplete information. In [12], the authors study a case in which the transducer
can read some of the input signals some of the time. In more detail, sensing the truth
value of an input signal has a cost, the system has a budget for sensing, and it tries
to realize the specification while minimizing the required sensing budget. In [39], the
authors study games with errors. Such games correspond to a synthesis scenario in
which there are positions during the interaction in which input signals are read by
the system with an error. The games are characterized by the number or rate of errors
that the system has to cope with, and by the ability of the system to detect whether a
current input is erred.

In this work we introduce and study a different model of incomplete information
in the multi-valued setting. In our model, the system always reads all input signals,
but their value may be perturbed according to a known noise function. This setting
naturally models incomplete information in real-life multi-valued settings. For ex-
ample, when the input is read by sensors that are not accurate (e.g., due to bounded
precision, or to probabilistic measuring) or when the input is received over a noisy
channel and may come with some distortion. The multi-valued setting we consider is
that of finite lattices. A lattice is a partially-ordered set L = 〈A,≤〉 in which every
two elements ` and `′ have a least upper bound (` join `′, denoted `∨`′) and a greatest
lower bound (` meet `′, denoted `∧ `′). Of special interest are two classes of lattices:
(1) Fully ordered, where L = 〈{1, . . . , n},≤〉, for an integer n ≥ 1 and the usual
“less than or equal” order. In this lattice, the operators ∨ and ∧ correspond to max
and min, respectively. (2) Power-set lattices, where L = 〈2X ,⊆〉, for a finite set X ,
and the containment (partial) order. In this lattice, the operators ∨ and ∧ correspond
to ∪ and ∩, respectively.

The lattice setting is a good starting point to the multi-valued setting. While their
finiteness circumvents the infinite-state space of dense multi-values, lattices are suf-
ficiently rich to capture many quantitative settings. Fully-ordered lattices are some-
times useful as is (for example, when modeling priorities [4]), and sometimes thanks
to the fact that real values can often be abstracted to finitely many linearly ordered
classes. The power-set lattice models a wide range of partially-ordered values. For
example, in a setting with inconsistent viewpoints, we have a set X of agents, each
with a different viewpoint of the system, and the truth value of a signal or a formula
indicates the set of agents according to whose viewpoint the signal or the formula are
true. As another example, in a peer-to-peer network, one can refer to the different at-
tributes of the communication channels by assigning with them subsets of attributes.
From a technical point of view, the fact that lattices are partially ordered poses chal-
lenges that do not exist in (finite and infinite) full orders. For example, as we are
going to see, the fact that a specification is realizable with value ` and with value `′

does not imply it is realizable with value ` ∨ `′, which trivially holds for full orders.
We start by defining lattices and the logic Latticed LTL (LLTL, for short). We

then study theoretical properties of LLTL: We study cases where the set of attainable
truth values of an LLTL formula are closed under ∨, thus a maximal attainable value
exists, even when the lattice elements are partially ordered. We also study stabil-
ity properties, namely the affect of perturbing the values of the atomic propositions
on the satisfaction value of formulas. We continue to the synthesis and the noisy-
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synthesis problems for LLTL, which we solve via a translation of LLTL formulas to
Boolean automata. We show that by working with universal automata, we can handle
the exponential blow-up that incomplete information involves together with the ex-
ponential blow-up that determination (or alternation removal, if we take a Safraless
approach) involves, thus the noisy-synthesis problem stays 2EXPTIME-complete, as
it is for LTL. In addition, we consider a probabilistic setting, where the noise is given
by some distribution, rather than by an adversary. Then, the goal is to synthesize a
transducer that maximizes the probability of satisfying the specification. By utilizing
the results of [10], we show that this problem can be solved in 2NEXPTIME∩co-
2NEXPTIME.

1.1 Related work

As described above, researchers have extensively studied synthesis with incomplete
information, as well as quantitative extensions to Boolean synthesis. Here, we de-
scribe work on synthesis in the presence of noisy input.

A variant of noisy synthesis was considered in [27] for metric automata – de-
terministic automata equipped with a metric on the state space. There, the authors
consider controller synthesis, where the automaton tries to generate a word in its lan-
guage, namely one on which the run of the automaton is accepting, and an adversary
is allowed to disturb the run of the automaton (i.e., to change the current state). The
goal is to find a strategy for the automaton such that if the disturbance is bounded
with respect to the metric, then the run of the automaton is close (with respect to
the metric) to being accepting. The authors describe polynomial-time algorithms for
robust synthesis for Büchi automata as well as, under certain conditions, for parity
automata.

There are two main differences between our work and [27]. First, the measure
of correctness in [27] is Boolean, in the sense that the set of accepting runs has a
Boolean characterization function, and the source of quantitativeness is the distance
of the generated run from the set of accepting runs. In contrast, our definition of
correctness is inherently multi-valued, as lattice automata are multi-valued. Second,
in [27], the only input from the environment is the disturbance, whereas our case is
similar to conventional synthesis, in which the environment controls the input, and
the noise is either adversarial or random.

Another approach for modeling noise was taken in [36], where systems with un-
modeled transitions are considered. These systems are equipped with a set ∆ of tran-
sitions that may or may not actually exist. Then, a controller is robust for a system
S and a specification ϕ if it realizes ϕ in all systems that are obtained from S by
adding to it a subset of the transitions in ∆. Since such robustness conditions are
extremely strong, the authors define “levels” of robustness, which are assigned by
giving a rank to every subset of ∆, and assigning to a transducer the maximal rank
it realizes. The authors show that when the ranking function is induced by simple-
enough partial orders (e.g. set inclusion), then finding an optimal transducer can be
done in 2EXPTIME for LTL specifications.



Latticed-LTL Synthesis in the Presence of Noisy Inputs 5

Conceptually, our work differs from [36] in that the noise is given in an online
manner by an adversary, as part of the input, and does not involve a structural change
in the system. In addition, the ranking in [36] is again based on a Boolean notion of
correctness, whereas in our case correctness is quantitative.

2 Preliminaries

2.1 Lattices

Consider a set A, a partial order ≤ on A, and a subset P of A. An element ` ∈ A
is an upper bound on P if ` ≥ `′ for all `′ ∈ P . Dually, ` is a lower bound on P if
` ≤ `′ for all `′ ∈ P . The pair 〈A,≤〉 is a lattice if for every two elements `, `′ ∈ A,
both the least upper bound and the greatest lower bound of {`, `′} exist, in which case
they are denoted `∨ `′ (` join `′) and `∧ `′ (` meet `′), respectively. We use ` < `′ to
indicate that ` ≤ `′ and ` 6= `′. We say that ` is a child of `′, denoted ` ≺ `′, if ` < `′

and there is no `′′ such that ` < `′′ < `′.

A lattice L = 〈A,≤〉 is finite if A is finite. Note that finite lattices are complete:
every subset of A has a least-upper and a greatest-lower bound. We use > (top) and
⊥ (bottom) to denote the least-upper and greatest-lower bounds of A, respectively.
A lattice is distributive if for every `1, `2, `3 ∈ A, we have `1 ∧ (`2 ∨ `3) = (`1 ∧
`2)∨ (`1 ∧ `3) and `1 ∨ (`2 ∧ `3) = (`1 ∨ `2)∧ (`1 ∨ `3). The traditional disjunction
and conjunction logic operators correspond to the join and meet lattice operators. In a
general lattice, however, there is no natural counterpart to negation. A De-Morgan (or
quasi-Boolean) lattice is a lattice in which every element a has a unique complement
element ¬` such that ¬¬` = `, De-Morgan rules hold, and ` ≤ `′ implies ¬`′ ≤ ¬`.
In the rest of this paper we consider only finite distributive De-Morgan lattices. We
focus on two classes of such lattices: (1) Fully ordered, where L = 〈{1, . . . , n},≤〉,
for an integer n ≥ 1 and the usual “less than or equal” order. Note that in this lattice,
the operators ∨ and ∧ correspond to max and min, respectively, and ¬i = n− i+1.
(2) Power-set lattices, where L = 〈2X ,⊆〉, for a finite set X , and the containment
(partial) order. Note that in this lattice, the operators ∨ and ∧ correspond to ∪ and ∩,
respectively, and negation corresponds to complementation.

Consider a lattice L = 〈A,≤〉. A join irreducible element in L is l ∈ A such
that l 6= ⊥ and for all elements l1, l2 ∈ A, if l1 ∨ l2 ≥ l, then l1 ≥ l or l2 ≥ l. For
example, the join irreducible elements in 〈2X ,⊆〉 are all singletons {x}, for x ∈ X .
By Birkhoff’s representation theorem for finite distributive lattices, in order to prove
that l1 = l2, it is sufficient to prove that for every join irreducible element l it holds
that l1 ≥ l iff l2 ≥ l. We denote the set of join irreducible elements of L by JI(L).
For convenience, we often talk about a lattice L without specifying A and ≤. We
then abuse notations and refer to L as a set of elements and talk about l ∈ L or about
assignments in LAP (rather than l ∈ A or assignments in AAP ).
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2.2 The logic LLTL

The logic LLTL is a natural generalization of LTL to a multi-valued setting, where
the atomic propositions take values from a lattice L [13,21]. Given a (finite distribu-
tive De-Morgan) lattice L, the syntax of LLTL is given by the following grammar,
where p ranges over a set AP of atomic propositions, and ` ranges over L.

ϕ := ` | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ.

The semantics of LLTL is defined with respect to a computation π = π0, π1, . . . ∈
(LAP )ω . Thus, in each moment in time the atomic propositions get values from L.
Note that classical LTL coincides with LLTL defined with respect to the two-element
fully-ordered lattice. For a position i ≥ 0, we use πi to denote the suffix πi, πi+1, . . .
of π. Given a computation π and an LLTL formula ϕ, the satisfaction value of ϕ in π,
denoted [[π, ϕ]], is defined by induction on the structure of ϕ as follows (the operators
on the right-hand side are the join, meet, and complementation operators of L).

– [[π, `]] = `. – [[π, ϕ ∨ ψ]] = [[π, ϕ]] ∨ [[π, ψ]].
– [[π, p]] = π0(p). – [[π,Xϕ]] = [[π1, ϕ]].
– [[π,¬ϕ]] = ¬[[π, ϕ]]. – [[π, ϕUψ]] =

∨
i≥0([[π

i, ψ]] ∧
∧

0≤j<i[[π
j , ϕ]]).

Example 1 Consider a setting in which three agents a, b, and c have different view-
points on a system S. A truth assignment for the atomic propositions is then a function
in (2{a,b,c})AP assigning to each p ∈ AP the set of agents according to whose view-
point p is true. We reason about S using the lattice L = 〈2{a,b,c},⊆〉. For example,
the truth value of the formula ψ = G(req → F grant) in a computation is the set
of agents according to whose view-point, whenever a request is sent, it is eventually
granted.

Remark 1 [Constants in LLTL ] Recall that the constants True and False in LTL
do not add to its expressive power. Indeed, True can be replaced by p ∨ (¬p), for
a Boolean atomic proposition p, and similarly for False. This is not the case for
the constants ` ∈ L in LLTL. For example, consider the linear lattice 〈{1, ..., 5},≤
〉. It is easy to show that for every formula ϕ (without constants) over the atomic
propositions AP , the computation π for which πi(p) = 3 for every i ≥ 0 and p ∈
AP , satisfies [[π, ϕ]] = 3. It follows that there is no LLTL formula ϕ that is equivalent
to the constant 1.

Constants can be used to upper or lower bound the satisfaction value of an LLTL
formula. For example, the truth value of the LLTL formula {a, b} ∧ ψ, defined with
respect to the lattice 〈2{a,b,c},⊆〉, is the set of agents that is both a subset of {a, b}
and according to whose viewpoint, the specification ψ is satisfied. ut

2.3 LLTL synthesis

Consider a lattice L and finite disjoint sets I and O of input and output signals that
take values in L. An (I/O)-transducer over L models an interaction between an
environment that generates in each moment in time an input in LI and a system that
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responds with outputs in LO. Formally, an (I/O)-transducer over L (transducer,
when I , O, and L are clear from the context) is a tuple T = 〈L, I, O, S, s0, η, τ〉
where S is a finite set of states, s0 ∈ S is an initial state, η : S × LI → S is a
deterministic transition function, and τ : S → LO is a labeling function. We extend
η to words in (LI)∗ in the straightforward way. Thus, η : (LI)∗ → S is such that
η(ε) = s0, and for x ∈ (LI)∗ and i ∈ LI , we have η(x · i) = η(η(x), i). Each
transducer T induces a strategy fT : (LI)∗ → LO where for all w ∈ (LI)∗, we have
fT (w) = τ(η(w)). Thus, fT (w) is the letter that T outputs after reading the sequence
w of input letters. Given a sequence i0, i1, i2, . . . ∈ (LI)ω of input assignments,
the transducer generates the computation ρ = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . ∈
(LI∪O)ω , where for all j ≥ 1, we have oj = fT (i0 · · · ij−1).

Consider a lattice L, an LLTL formula ϕ over the atomic propositions I ∪ O,
and a predicate P ⊆ L. We say that a transducer T realizes 〈ϕ, P 〉 if for every
computation ρ of T , it holds that [[ρ, ϕ]] ∈ P . The realizability problem for LLTL is
to determine, given ϕ and P , whether there exists a transducer that realizes 〈ϕ, P 〉.
We then say that ϕ is (I/O)-realizable with values in P . The synthesis problem is
then to generate such a transducer. Of special interest are predicates P that are upward
closed. Thus, P is such that for all ` ∈ L, if ` ∈ P then `′ ∈ P for all `′ ≥ `.

Example 2 Consider a system that grants requests to a server. Requests (r) have
an importance ranking, and grants (g) have a quality ranking. Both rankings are in
{1, ..., 10}. Consider a specification to the system such that the satisfaction value of
the specification in a computation depends on the following three parameters: (1) the
importance of the requests and the quality of the grants: the more important the re-
quests is, the higher the quality of the response should be (2) Ideally, each request is
immediately given a grant that holds for two time steps. We are willing, however, to
compromise for a grant that only holds for one time step, but this reduces the satis-
faction value. Specifically, if the grant is given only in the single time step after the
request, the satisfaction value is at most 8, and if it is given only in the single next
time step, then the satisfaction value is at most 6. Finally, (3) high-quality grants are
expensive. Specifically, for every window of three times steps, the satisfaction value
is bounded by 10 − v, where v is the lowest quality of a grant given in the window.
We can specify the system by a conjunction ϕ∧ψ of LLTL formulas over the lattice
〈{1, ..., 10},≤〉, where ϕ = G(r → ((Xg∧XXg)∨ (Xg∧8)∨ (XXg∧6))) expresses
the granting policy, and ψ = G(¬(g ∧Xg ∧XXg)) expresses the need to have at least
one low-quality grant in every window of three time steps.

It is not hard to see that the specification cannot be realizable with a satisfac-
tion value above 6, as an input sequence in which requests of a high importance are
received always, causes ϕ and ψ to conflict. We thus add an assumption about the
demand to the server and require that consecutive request cannot be both important.
Formally, we define θ = G(¬(r ∧ Xr)), and the full specification to the system is
θ → (ϕ ∧ ψ).
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2.4 Noisy synthesis

Consider an LLTL formula ϕ over atomic proposition I ∪ O and a predicate P . In
noisy synthesis, we consider the synthesis problem in a setting in which the inputs
are read with some perturbation and the goal is to synthesize a transducer that never-
theless realizes 〈ϕ, P 〉.

In order to formalize the above intuition, we first formalize the notion of noise.
Consider a lattice L = 〈A,≤〉 and two elements `1, `2 ∈ L. We define the dis-
tance between `1 and `2, denoted d(`1, `2), as the shortest path from `1 to `2 in
the undirected graph 〈A,E≺〉 in which E≺(v, v

′) iff v ≺ v′ or v′ ≺ v. For ex-
ample, in the fully-ordered lattice L, we have d(i, j) = |i − j|, and in the power-
set lattice, the distance coincides with the Hamming distance, thus d(X1, X2) =
|(X1 \ X2) ∪ (X2 \ X1)|. For two assignments f, f ′ ∈ LAP , we define d(f, f ′) =
maxp∈AP d(f(p), f

′(p)).
We assume we are given a noise function ν : LI → 2L

I

, describing the possible
perturbations of each input. That is, for every i ∈ LI the set ν(i) consists of the
inputs that may have been actually generated by the environment, when the system
reads i. A natural noise function is ν(i) = {j : d(i, j) ≤ γ}, for some constant γ,
which is the γ-units ball around i. Given a noise function ν and two computations
π, π′ ∈ (LI∪O)ω , we say that π′ is ν-indistinguishable from π if for every i ≥ 0, we
have that π′i|I ∈ ν(πi|I) and π′i|O = πi|O, where σ|I is the restriction of σ ∈ LI∪O
to inputs in I , and similarly for σ|O and O. Thus, π′ is obtained from π by changing
only the assignment to input signals, within ν. Note that ν need not be a symmetric
function, nor is the definition of ν-indistinguishablity. We say that a transducer T
realizes 〈ϕ, P 〉with noise ν if for every computation π of T , we have that [[π′, ϕ]] ∈ P
for all computations π′ that are ν-indistinguishable from π. Thus, the reaction of T
on every input sequence satisfies ϕ in a desired satisfaction value even if the input
sequence is read with noise ν.

Remark 2 [Incomplete information as noise] As discussed in Section 1, synthesis
with incomplete information has been extensively studied in the Boolean setting [24].
Synthesis with incomplete information, in both the Boolean and the multi-valued
settings, can be viewed as a special case of our noisy synthesis. To see this, let I ∪
H ∪ O be a partition of the signals to input (that is, visible), hidden, and output
signals, respectively. Consider the noise function ν in which for i ⊆ I and h ⊆ H ,
we have ν(i∪h) = {i ∪ h′ : h′ ⊆ H}. The function ν makes letters that agree on the
assignment to the input signals and differ only in the hidden signal indistinguishable,
and thus models incomplete information.

The synthesis procedure described in Theorem 10 thus enables us to solve also
synthesis with incomplete information. The obtained complexity coincides with the
one given in [24]. ut

Example 3 Recall our request-granting specification from Example 2. As described
there, requests get values in {1, . . . , 10}, reflecting their importance. Assume that
the channel over which requests are sent is noisy and can perturb the value by 2.
Thus, the noise function is ν(i) = {i− 2, i− 1, i, i+ 1, i+ 2} ∩ {1, . . . , 10}. The
effect of such a noise is an increase in the importance of all requests. Indeed, since
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the synthesized system has to satisfy the specification regardless of the noise, and
requests appear negatively (that is, in the left-hand side of an implication) in the
specification, then noise that increases their value may reduce the satisfaction value
of the specification. Thus, in the presence of noise ν, the synthesized systems has to
respond with grants of higher quality.

2.5 Automata and games

As described in Section 1, our solution to the LLTL noisy-synthesis problem is based
on automata and games.

An automaton over infinite words is A = 〈Σ,Q,Q0, δ, α〉, where Σ is the input
alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ : Q×Σ → 2Q

is a transition function, and α is an acceptance condition. When A is a generalized
Büchi or a generalized co-Büchi automaton, then α ⊆ 2Q is a set of sets of accepting
states. When A is a parity automaton, then α = 〈F1, . . . , Fd〉, where the sets in α
form a partition of Q. The number of sets in α is the index of A. An automaton is
deterministic if |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1.
A run r = r0, r1, . . . ofA on a word w = w1 ·w2 · · · ∈ Σω is an infinite sequence of
states such that r0 ∈ Q0, and for every i ≥ 0, we have that ri+1 ∈ δ(ri, wi+1). We
denote by inf(r) the set of states that r visits infinitely often, that is inf(r) = {q : ri =
q for infinitely many i ∈ N}. The run r is accepting if it satisfies α. For generalized
Büchi automata, a run is accepting if it visits all the sets inα infinitely often. Formally,
for every set F ∈ α, we have that inf(r) ∩ F 6= ∅. Dually, in generalized co-Büchi
automata, there should exist a set F ∈ α for which inf(r) ∩ F = ∅. For parity
automata, a run r is accepting if the minimal index i for which inf(r) ∩ Fi 6= ∅ is
even.

When A is a nondeterministic automaton, it accepts a word w if it has an accept-
ing run on w. When A is a universal automaton, it accepts a word w if all its runs
on w are accepting. The language of A, denoted L(A), is the set of words that A
accepts.

A parity game is G = 〈Σ1, Σ2, S, s0, δ, α〉, where Σ1 and Σ2 are alphabets for
Players 1 and 2, respectively, S is a finite set of states, s0 ∈ S is an initial state,
δ : S × Σ1 × Σ2 → S is a transition function, and α = 〈F1, . . . , Fd〉 is a parity
acceptance condition, as described above. A play of the game starts in s0. In each
turn Player 1 chooses a letter σ ∈ Σ1 and Player 2 chooses a letter τ ∈ Σ2. The play
then moves from the current state s to the state δ(s, σ, τ). Formally, a play of G is an
infinite sequence ρ = 〈s0, σ0, τ0〉, 〈s1, σ1, τ1〉, . . . such that for every i ≥ 0, we have
that si+1 = δ(si, σi, τi). We define inf(ρ) = {s ∈ S : s = si for infinitely many i ∈
N}. A play ρ is winning for Player 1 if the minimal index i for which inf(ρ)∩Fi 6= ∅
is even. A strategy for Player 1 is a function f : (S × Σ1 × Σ2)

∗ × S → Σ1 that
assigns, for every finite prefix of a play, the next move for Player 1. Similarly, a
strategy for Player 2 is a function g : (S ×Σ1 ×Σ2)

∗ × S ×Σ1 → Σ2. A strategy
is memoryless if it does not depend on the history of the play. Thus, a memoryless
strategy for Player 1 is a function f : S → Σ1 and for Player 2 it is a function
g : S ×Σ1 → Σ2.
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A pair of strategies f, g for Players 1 and 2, respectively, induces a single play
that conforms with the strategies. We say that Player 1 wins G if there exists a strategy
f for Player 1 such that for every strategy g for Player 2, the play induced by f and g
is winning for Player 1. Otherwise, Player 2 wins. By determinancy of Parity games
[28], Player 2 wins G if there exists a strategy g for Player 2 such that for every
strategy f of Player 1, the play induced by f and g is not winning for Player 1.

2.6 Solving the Boolean synthesis problem

The classical solution for the synthesis problem for LTL goes via games [31].1 It in-
volves a translation of the specification into a deterministic parity automaton (DPW)
over the alphabet 2I∪O, which is then transformed into a game in which the play-
ers alphabets are 2I and 2O. More recent solutions avoids the determination and the
solution of parity games and use instead alternating tree automata [25,17]. The com-
plexity of both approaches coincide. Below we describe the classical solution for the
synthesis problem, along with its complexity, when the starting point is a specifica-
tion given by a DPW.2 In Remark 3, we describe an alternative, Safraless, approach,
where the starting point is a universal co-Büchi automaton.

Theorem 1 Consider a specification ϕ over I and O given by means of a DPW Dϕ
of size t over the alphabet 2I∪O, with index k. The synthesis problem for ϕ can be
solved in time O(tk).

Proof LetDϕ = 〈2I∪O, Q, q0, δ, α〉. We define a game Gϕ that models an interaction
that simulates Dϕ between a system (Player 1) that generates assignments in 2O

and an environment (Player 2) that generates assignments in 2I . Formally, Gϕ =
〈2O, 2I , Q, q0, η, α〉, where η : Q×2I×2O → Q is such that for every q ∈ Q, i ∈ 2I ,
and o ∈ 2O, we have that η(q, i, o) = δ(q, i∪o). By [15], the game is determined and
one of the players has a memoryless winning strategy. Such a strategy for Player 1
in Gϕ can then be viewed as a transducer that realizes ϕ, as follows: the states of the
transducer are the states of the game, and at each state, the output corresponds to that
prescribed by the strategy. The inputs then move the state of the transducer according
to the transitions of the game.

Finally, the game Gϕ is of size O(t) and index k. Hence, by [19,35], we can find
a memoryless strategy for the winner in time O(tk). ut

3 Properties of LLTL

In this section we study properties of the logic LLTL that are relevant in the context
of noisy synthesis. We focus on the set of attainable satisfaction values of an LLTL

1 In [31] and other early works the games are formulated by means of tree automata.
2 State-of-the-art algorithms for solving parity games achieve a better complexity [19,35]. The bound,

however, remains polynomial in the size of the game and exponential in its index. Since the challenge of
solving parity games is orthogonal to our contribution here, we keep this component of our contribution
simple.
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formula and on stability properties, namely the affect of perturbing the values of the
atomic propositions on the satisfaction value of formulas.

3.1 Attainable values

Consider a lattice L. We say that L is pointed if for all LLTL formulas ϕ, partitions
I ∪ O of AP , and values `1, `2 ∈ L, if ϕ is (I/O)-realizable with value `1 and
with value `2, then ϕ is also (I/O)-realizable with value `1 ∨ `2. Observe that if L
is pointed, then every LLTL formula over L has a transducer that realizes it with a
maximal value.

In particular, as will follow from Section 5, synthesis on pointed lattices can be
optimized by reducing the number of lattice subsets that one needs to check in order
to establish the values with which a formula is satisfiable. For example, in the subset
lattice 2{a,b} (which is pointed by Theorem 3 below), if a formula is realizable both
with value b and with value b, then it is realizable with value {a, b}.

We start by showing that in general, not all lattices are pointed. In fact, our exam-
ple has O = ∅, where (I/O)-realizability coincides with satisfiability. We then show
that the lattices we focus on, are, however, pointed.

Theorem 2 Not all distributive De-Morgan lattices are pointed.

Proof Consider the lattice L = 〈2{a,b} × {0, 1},≤〉 where 〈S1, v1〉 ≤ 〈S2, v2〉 iff
v1 ≤ v2 or (v1 = v2 and S1 ⊆ S2). (See Figure 1). We define ¬〈S, v〉 = 〈{a, b} \
S, 1 − v〉. That is, negation negates both components. It is easy to verify that L is a
distributive De-Morgan lattice.

Let I = {p} and consider the formula ϕ = (p∧〈{a}, 1〉)∨ (¬p∧〈{b}, 1〉). Both
〈{a}, 1〉 and 〈{b}, 1〉 are attainable satisfaction values of ϕ. For example, by setting p
to 〈{a}, 1〉 or to 〈{a}, 0〉. On the other hand, for every assignment ` to p, the second
component of either ` or ¬` is 0. Consequently, 〈{a, b}, 1〉 is not attainable, thus L is
not pointed. ut

{a, b}, 1
{a}, 1 {b}, 1

∅, 1

{a, b}, 0
{a}, 0 {b}, 0

∅, 0

Fig. 1 The lattice 〈2{a,b} × {0, 1},≤〉.

w

z

y

x

s

Fig. 2 An N5 structure.

Theorem 3 Fully-ordered lattices and power-set lattices are pointed.
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Proof For fully-ordered lattices, we have `1 ∨ `2 ∈ {`1, `2}, so pointed-ness is ob-
vious. We prove the claim for power-set lattices. Consider a lattice L = 〈2X ,⊆〉 for
some finite set X , and consider an LLTL formula ϕ over the atomic propositions
I ∪ O. For every set ` ∈ L and element x ∈ X , we define the projection `|x of ` on
x to be True if x ∈ ` and False otherwise. We extend the definition of projection to
a letter σ ∈ LI∪O by letting p ∈ σ|x iff L(p)|x = True. Thus, σ|x ⊆ I ∪O. Finally,
we extend the definition to a computation π ∈ (LI∪O)ω by setting (π|x)i = (πi)|x.
Observe that π|x ∈ (2I∪O)ω .

For an element x ∈ X , let ϕ|x be the LTL formula obtained from ϕ by replacing
every element ` ∈ L that appears in ϕ by `|x. Since the syntax of LLTL differs from
that of LTL only by allowing elements from the lattice, it follows that ϕ|x is indeed
an LTL formula.

We prove that for every computation π ∈ (LI∪O)ω and for every ` ∈ L, it holds
that [[π, ϕ]] ≥ ` iff π|x |= ϕx for all x ∈ `. Observe that [[π, ϕ]] ≥ ` iff x ∈ [[π, ϕ]] for
all x ∈ `. From here the claim easily follows by induction on the structure of ϕ.

Now, assume that ϕ is (I/O)-realizable with value at least `1 and with value at
least `2. We claim that ϕ is realizable with value `1 ∨ `2. W.l.o.g we can assume
`1 ∩ `2 = ∅ (otherwise we replace `2 by `2 \ `1). Let T1 = 〈L, I, O, S1, s10, η

1, τ1〉
and T2 = 〈L, I, O, S2, s20, η

2, τ2〉 be transducers that realize ϕ with values `1 and
`2, respectively. We obtain from T1 and T2 a new transducer T = 〈L, I, O, S1 ×
S2, 〈s10, s20〉, η, τ〉 as follows. For every state 〈s, t〉 ∈ S1 × S2 and σ ∈ LI , we have
η(〈s, t〉, σ) = 〈η1(s, σ), η2(t, σ)〉. For every state 〈s, t〉 ∈ S1 × S2 and for every
o ∈ O, we have τ(〈s, t〉)(o) = (`1 ∩ τ1(s)(o)) ∪ (`2 ∩ τ2(s)(o)). We claim that T
realizes ϕ with value `1 ∨ `2.

Consider an environment-computation π ∈ (LI)ω , and consider the correspond-
ing computations ρ, ρ′ ∈ LI∪O of T1 and T2, respectively. It holds that [[ρ, ϕ]] ≥ `1
and [[ρ′, ϕ]] ≥ `2.

Consider the output computation θ ∈ (LO)ω of T on the input π. By the con-
struction of T , it is easy to prove that θi(o) = (`1 ∩ ρi(o)) ∪ (`2 ∩ ρ′i(o)).

Consider the computation π′ of T obtained by combining π and θ. For every
x ∈ `1, we have that π′|x = ρ|x. Thus, π′|x |= ϕx for every x ∈ `1. Similarly, for
every x ∈ `2, we have that π′|x = ρ′|x, so π′|x |= ϕx for every x ∈ `2. We conclude
that for every x ∈ `1 ∪ `2 it holds that π′|x |= ϕ, and so [[π′, ϕ]] ≥ `1 ∨ `2. Thus, T
realizes ϕ with value `1 ∨ `2. ut

3.2 Stability

For two computations π = π0, π1, . . . and π′ = π′0, π
′
1, . . ., both in (LAP )ω , we

define the global distance between π and π′, denoted gd(π, π′), as
∑
i≥0 d(πi, π

′
i).

Note that gd(π, π′) may be infinite. We define the local distance between π and π′,
denoted ld(π, π′), as maxi≥0 d(πi, π

′
i). Note that ld(π, π′) ≤ |L|.

Consider an LLTL formula ϕ over AP and L. We say that ϕ is globally stable
if for every pair π and π′ of computations, we have d([[π, ϕ]], [[π′, ϕ]]) ≤ gd(π, π′).
Thus, the difference between the satisfaction value of ϕ in π and π′ is bounded by the
sum of differences between matching locations in π and π′. Also, ϕ is locally stable
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if for every pair π and π′ of computations, we have d([[π, ϕ]], [[π′, ϕ]]) ≤ ld(π, π′).
Thus, the difference between the satisfaction value of ϕ in π and π′ is bounded by the
maximal difference between matching locations in π and π′. Here, we study stability
of all LLTL formulas. In Section 6, we study the problem of deciding whether a
given LLTL formula is locally stable, and discuss the relevancy of local stability to
synthesis with noise.

Consider an LLTL formula ϕ over the atomic propositions AP , and consider
computations π, π′ ∈ (LAP )ω . Assume that gd(π, π′) ≤ 1. That is, π and π′ differ
only in one location, where they differ in the value of a single atomic proposition,
whose value in π is a child of its value in π′ or vice versa. It is tempting to think that
then, d([[π, ϕ]], [[π′, ϕ]]) ≤ 1, which would imply that ϕ should be globally stable.

We start by breaking this intuition, showing that for non-distributive lattices, this
is false. The proof makes use of an N5 structure, depicted in Figure 2. Formally, an
N5 structure in a lattice L is a tuple 〈x, y, z, w, s〉 such that the following relations
hold: s < x < y < w, s < z < w, y 6≤ z, z 6≤ y, x 6≤ z, and z 6≤ x. Note that
x∨ (z∧y) = x∨s = x, whereas (x∨z)∧ (x∨y) = w∧y = y. Hence, the structure
of N5 is never a sub-lattice in a distributive lattice.

Theorem 4 LLTL formulas may not be globally stable with respect to non-distributive
lattices.

Proof Consider the lattice N5, the formula ϕ = p ∨ q, and a computation π such
that π0(p) = s and π0(q) = x. Clearly [[π, ϕ]] = x. Now, let π′ be the computa-
tion obtained from π by setting π′0(p) = z. It holds that gd(π, π′) = 1. However,
[[π′, ϕ]] = z ∨ x = w, and d(x,w) = 2. Thus, ϕ is not globally stable over the lattice
N5. ut

We now proceed to show that when defined with respect to a distributive lattice,
all LLTL formulas are globally stable.

Theorem 5 LLTL formulas are globally stable with respect to De-Morgan distribu-
tive lattices.

Proof We prove that for every LLTL formula ϕ and computations π, π′ ∈ (LAP )ω ,
if gd(π, π′) = 1, then d([[π, ϕ]], [[π′, ϕ]]) ≤ 1. The result then follows by induction on
gd(π, π′).

Consider an LLTL formula ϕ and computations π, π′ such that gd(π, π′) = 1.
That is, there exists a single index i ≥ 0 such that d(πi, π′i) = 1 and πj = π′j
for all j 6= i. W.l.o.g, there is p ∈ AP such that πi(p) � π′i(p). By Birkhoff’s
representation theorem, there exists a unique element u ∈ JI(L) such that π′i(p) =
πi(p) ∨ u. We prove, by induction over the structure of ϕ, that [[π′, ϕ]] ∈ {[[π, ϕ]] ∧
¬u, [[π, ϕ]], [[π, ϕ]] ∨ u} and that d([[π′, ϕ]], [[π, ϕ]]) ≤ 1.

To simplify the proof, we observe that since π and π′ differ only in a single in-
dex, and in particular only in a finite prefix, we can avoid treating the case of U sub-
formulas. Indeed, we can expand subformulas of the form ψUθ using propositional
conjunctives and the X operator so that all the suffixes before πi are not evaluated
on subformulas that contain U. Clearly, the value of the remaining evaluation of U
subformulas does not change, as π and π′ agree on suffixes that start after the i-th
position.
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– If ϕ = ` ∈ L the claim is trivial.
– If ϕ = p ∈ AP , then d([[π, ϕ]], [[π′, ϕ]]) = d([[π0, p]], [[π

′
0, p]]), which, by the

assumption, is at most 1. Moreover, [[π′, p]] ∈ {[[π, p]], [[π, p]] ∨ u}.
– If ϕ = ¬ψ, then by the induction hypothesis it holds that [[π′, ψ]] ∈ {[[π, ψ]] ∧
¬u, [[π, ψ]], [[π, ψ]] ∨ u} and d([[π, ψ]], [[π′, ψ]]) ≤ 1. Hence, by the properties of
negation, d(¬[[π, ψ]],¬[[π′, ψ]]) ≤ 1 and [[π′, ϕ]] ∈ {[[π, ϕ]] ∧ ¬u, [[π, ϕ]], [[π, ϕ]] ∨
u}, and we are done.

– If ϕ = ψ∨θ, then, by the induction hypothesis, it holds in particular that [[π, ψ]]∧
¬u ≤ [[π′, ψ]] ≤ [[π, ψ]] ∨ u and [[π, θ]] ∧ ¬u ≤ [[π′, θ]] ≤ [[π, θ]] ∨ u. Therefore,
[[π, ϕ]] ∧ ¬u ≤ [[π′, ϕ]] ≤ [[π, ϕ]] ∨ u. Figure 3 demonstrates the above relations.
Intuitively, adding a lattice element between ψ ∨ θ ∨ u and (ψ ∨ θ) ∧ u induces
an N5-structure. Thus, [[π′, ϕ]] must be within distance 1 of [[π, ϕ]]. This is the key
point in the proof.
Formally, in order to prove that the distance is preserved, we distinguish between
cases. First, if [[π′, ϕ]] = [[π, ϕ]], then we are done. If [[π′, ϕ]] = [[π, ϕ]] ∨ v, then
since [[π′, ϕ]] = [[π′, ψ]]∨ [[π′, θ]], it must be that w.l.o.g [[π′, ψ]] = [[π, ψ]]∨u. That
is, at least one of ψ and θ gets joined with u. Assume by way of contradiction
that there exists t ∈ L such that [[π′, ϕ]] < t < [[π, ϕ]] ∨ v. We then have the
N5 structure3 〈ψ ∨ θ, t, ψ ∨ u, ψ, ψ ∨ θ ∨ u〉. Since, however, L is distributive, it
cannot have an N5 structure, and we have reached a contradiction.
The case [[π, ϕ]] ∧ ¬u ≤ [[π′, ϕ]] is handled similarly.

ψ ∨ θ ∨ u

ψ ∨ θ

(ψ ∨ θ) ∧ ¬u

ψ ∨ u

ψ

ψ ∧ ¬u

θ ∨ u

θ

θ ∧ ¬u

Fig. 3 The relations described in the disjunction case in the proof of Theorem 5.

– If ϕ = Xψ, the claim follows immediately from the induction hypothesis.

ut

Consider an LLTL formula ϕ over a distributive de-Morgan lattice, and assume
we have a transducer T that realizes ϕ with some value v. Intuitively, Theorem 5 as-
sures us that if very little and few perturbations occur (either in the inputs or outputs),

3 It may be the case that some of the nodes coincide, and this is not a proper N5. However, these cases
are easy to handle.
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then T still realizes ϕ with a value that is “close” to v. While this is a very weak
notion of stability, it still offers some ability to handle noise.

We now turn to study local stability. Since local stability refers to the maximal
change along a computation, it is a very permissive notion. In particular, it is not hard
to see that in a fully-ordered lattice, a local change of 1 entails a change of at most 1
in the satisfaction value. Thus, we have the following.

Theorem 6 LLTL formulas are locally stable with respect to fully-ordered lattices.

In partially-ordered lattices, however, things are more involved, as local changes
may be in different “directions”. Formally, we have the following.

Theorem 7 LLTL formulas may not be locally stable.

Proof Consider the power-set lattice 〈2{a,b},⊆〉 and the LLTL formula ϕ = p∨Xp.
Consider computations π and π′ with π0(p) = π1(p) = ∅, π′0(p) = {a}, and π′1(p) =
{b}. It holds that ld(π, π′) = 1, whereas d([[π, ϕ]], [[π′, ϕ]]) = d(∅, {a, b}) = 2. We
conclude that ϕ is not locally stable. ut

In Section 6 we study local stability further and prove that the problem of deciding
whether a given LLTL formula is locally stable is PSPACE-complete.

4 Translating LLTL to Automata

In this section we describe an automata-theoretic approach for reasoning about LLTL
specifications. One approach is to develop a framework that is based on lattice au-
tomata [21]. Like LLTL formulas, lattice automata map words to values in a lattice.
Lattice automata have proven to be useful in solving the satisfiability and the model-
checking problems for LLTL [21]. However, the solution of the synthesis problem
involves automata-theoretic constructions for which the latticed counterpart is either
not known or is very complicated. In particular, Safra’s determinization construction
has not yet been studied for lattice automata, and a latticed counterpart of it is not
going to be of much fun. Likewise, the solution of two-player games (even reacha-
bility, and moreover parity) in the latticed setting is much more complicated than in
the Boolean setting. In particular, obtaining a value `1 ∨ `2 in a latticed game may
require one strategy for obtaining `1 and a different strategy for obtaining `2 [22].
When the game is induced by a realizability problem, it is not clear how to combine
such strategies into a single transducer that realizes the underlying specification with
value `1 ∨ `2.

Accordingly, a second approach, which is the one we follow, is to use Boolean au-
tomata. The fact that LLTL formulas have finitely many possible satisfaction values
suggests that this is possible. For fully-ordered lattices, a similar approach has been
taken in [16,1]. Beyond the challenge in these works of maintaining the simplicity of
the automata-theoretic framework of LTL, an extra challenge in the latticed setting
is caused by the fact values may be only partially ordered. We will elaborate on this
point below.

In order to explain our framework, let us recall first the translation of LTL for-
mulas to nondeterministic generalized Büchi word automata (NGBW), as introduced
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in [38]. There, each state of the automaton is associated with a set of formulas, and
the NGBW accepts a computation from a state q iff the computation satisfies exactly
all the formulas associated with q. The state space of the NGBW contains only states
associated with maximal and consistent sets of formulas, the transitions are defined
so that requirements imposed by temporal formulas are satisfied, and the acceptance
condition is used in order to guarantee that requirements that involve the satisfaction
of eventualities are not delayed forever.

In the construction here, each state of the NGBW assigns a satisfaction value to
every subformula. While it is not difficult to extend the local consistency rules to
the latticed settings, handling of eventualities is more complicated. To see why, con-
sider for example the formula Fp, for p ∈ AP , and the computation π in which the
satisfaction value of p is ({a}, {b}, {c})ω . While [[π, Fp]] = {a, b, c}, the computa-
tion never reaches a position in which the satisfaction value of the eventuality p is
{a, b, c}. This poses a problem on translations of LTL formulas to automata, where
eventualities are handed by making sure that each state in which the satisfaction of
ψ1Uψ2 is guaranteed, is followed by a state in which the satisfaction of ψ2 is guar-
anteed. For a multi-valued setting with fully-ordered values, as is the case in [16,1],
the latter can be replaced by a requirement to visit a state in which the guaranteed
satisfaction value of ψ exceeds that of ψ1Uψ2. As the example above demonstrates,
such a position need not exist when the values are partially ordered. In order to ad-
dress the above problem, every state in the NGBW associates with every subformula
of the form ψ1Uψ2 a value in L that ψ2 still needs “accumulate” in order for ψ1Uψ2

to have its assigned satisfaction value. Thus, as in other break-point constructions
[38,29], we decompose the requirement to obtain a value ` to requirements to obtain
join-irreducible values whose join is `, and we check these requirements together.

Theorem 8 Let ϕ be an LLTL formula over L and P ⊆ L be a predicate. There
exists an NGBW Aϕ,P such that for every computation π ∈ (2AP )ω , it holds that
[[π, ϕ]] ∈ P iff Aϕ,P accepts π. The state space and transitions of Aϕ,P are indepen-
dent of P , which only influences the set of initial states. The NGBWAϕ,P has at most
|L|O(|ϕ|) states and index at most |ϕ|.

Proof We define Aϕ,P = 〈LAP , Q, δ,Q0, α〉 as follows. Let cl(ϕ) be the set of ϕ’s
subformulas, and let ucl(ϕ) be the set of ϕ’s subformulas of the form ψ1Uψ2. Let
Gϕ and Fϕ be the collection of functions g : cl(ϕ) → L and f : ucl(ϕ) → L,
respectively. For an element v ∈ L, let JI(v) be the minimal set S ⊆ JI(L) such that
v =

∨
s∈S s. By Birkhoff’s theorem, this set is well defined, and the JI mapping is a

bijection.
For a pair of functions 〈g, f〉 ∈ Gϕ × Fϕ, we say that 〈g, f〉 is consistent if for

every ψ ∈ cl(ϕ), the following holds.

– If ψ = v ∈ L, then g(ψ) = v.
– If ψ = ¬ψ1, then g(ψ) = ¬g(ψ1).
– If ψ = ψ1 ∨ ψ2, then g(ψ) = g(ψ1) ∨ g(ψ2).
– If ψ = ψ1Uψ2, then JI(f(ψ)) ∩ JI(g(ψ2)) = ∅.

The state space Q of Aϕ,` is the set of all consistent pairs of functions in Gϕ × Fϕ.
Intuitively, while the function g describes the satisfaction value of the formulas in the
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closure, the function f describes, for each subformula of the form ψ1Uψ2, the values
in which ψ2 still has to be satisfied in order for the satisfaction value g(ψ1Uψ2) to be
fulfilled. Accordingly, if a value is in JI(g(ψ2)), it can be removed from f(ψ1Uψ2),
explaining why JI(f(ψ1Uψ2)) ∩ JI(g(ψ2)) = ∅.

Then, Q0 = {g ∈ Q : g(ϕ) ∈ P} contains all states in which the value assigned
to ϕ is in P .

We now define the transition function δ. For two states 〈g, f〉 and 〈g′, f ′〉 in Q
and a letter σ ∈ LAP , we have that 〈g′, f ′〉 ∈ δ(〈g, f〉, σ) iff the following hold.

– For all p ∈ AP , we have that σ(p) = g(p).
– For all Xψ1 ∈ cl(ϕ), we have g(Xψ1) = g′(ψ1).
– For all ψ1Uψ2 ∈ cl(ϕ), we have g(ψ1Uψ2) = g(ψ2)∨ (g(ψ1)∧ g′(ψ1Uψ2)) and

f ′(ψ1Uψ2) =

{
JI(f(ψ1Uψ2)) \ JI(g′(ψ2)) If JI(f(ψ1Uψ2)) 6= ∅,
JI(g′(ψ1Uψ2)) \ JI(g′(ψ2)) Otherwise.

Finally, every formula of the form ψ1Uψ2 contributes to the acceptance condition α
the set Fψ1Uψ2

= {〈g, f〉 : JI(f(ψ1Uψ2)) = ∅}.
Observe that while δ is nondeterministic, it is only nondeterministic in the first

component. That is, once the function g′ is chosen, there is a single function f ′ that
can match the transition.

We now proceed to prove the correctness of the construction and analyze the
blow-up it involves. In the proof, we identify a set S ⊆ JI(L) with the element∨
s∈S s ∈ L. Observe that it suffices to prove that for every ` ∈ L, the NGBW
Aϕ,{`} accepts a computation π iff [[π, ϕ]] = `. We first prove that if π ∈ (LAP )ω
is such that [[π, ϕ]] = ` for some ` ∈ L, then Aϕ,{`} accepts π. For every i ∈ N,
let gi ∈ Gϕ be such that for all ψ ∈ cl(ϕ), we have that gi(ψ) = [[πi, ψ]]. Also, let
f0 : ucl(ϕ) → L be such that for every subformula of the form ψ1Uψ2, we have
f0(ψ1Uψ2) = JI(g0(ψ1Uψ2)) \ JI(g0(ψ2)). Finally, for i ∈ N, let fi+1 be induced
from fi and gi+1 in the single way that satisfies the conditions in the definition of δ.

We claim that r = 〈g0, f0〉, 〈g1, f1〉, . . . is an accepting run of Aϕ,{l} on π. First,
the semantics of LLTL implies that the consistency conditions, both the local ones
and these imposed by δ are satisfied. In particular, for the conditions imposed by δ,
this follows from the fact that for all positions i ∈ N, we have that [[πi, Xψ1]] =
[[πi+1, ψ1]] and [[πi, ψ1Uψ2]] = [[ψ2]]∨([[πi, ψ1]]∧ [[πi, ψ1Uψ2]]). Also, since g0(ϕ) =
`, then 〈g0, f0〉 ∈ Q0

It is left to prove that r is accepting. Consider a sub-formula of the form ψ1Uψ2.
We prove that r visits Fψ1Uψ2 infinitely often. Consider a position i ∈ N and let
[[πi, ψ1Uψ2]] = y. We prove that there is a position n ≥ i such that fn = ∅, thus
〈gn, fn〉 ∈ Fψ1Uψ2

. By the semantics of U and the finiteness ofL, there is a (minimal)
index n ≥ i such that y =

∨
i≤j≤n([[π

j , ψ2]] ∧
∧
i≤k<j [[π

k, ψ1]]). It is easy to prove
by induction on n−i that there exists some i ≤ k ≤ n such that JI(fk(ψ1Uψ2)) = ∅,
using the fact that fj(ψ1Uψ2) ≤ gj(ψ1Uψ2) for all j ≥ 0.

The other direction is more complicated. Let π ∈ (LAP )ω be such that π is
accepted by Aϕ,{`}. We prove that [[π, ϕ]] = `. Let ρ = 〈g1, f1〉, 〈g2, f2〉, . . . be an
accepting run of Aϕ,{`} on π, and let h1, h2, . . . ∈ (Gϕ)

ω be such that for all i ∈ N
and ψ ∈ cl(ϕ), we have that hi(ψ) = [[πi, ψ]]. We claim that hi = gi for all i ∈ N.
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The proof is by induction on the structure of the formulas in cl(ϕ). Consider a formula
ψ ∈ cl(ϕ). If ψ = p ∈ AP , then since ρ is a legal run, a transition from state 〈gi, fi〉
is possible with letter σ iff σ(p) = [[πi, p]] = ρ(p), and we are done. If ψ = v ∈ L,
ψ = ψ1 ∨ψ2, or ψ = Xψ1, then the claim follows from the consistency rules and the
induction hypothesis. Finally, if ψ = ψ1Uψ2, then, as we prove in Lemma 1 below,
the fact that ρ is an accepting run implies the first equality in the chain below. The
second equality follows from the induction hypothesis, and the third equality is from
the semantics of LLTL.

gi(ψ) =
∨
i≤j

( gj(ψ2)∧
∧

i≤k<j

gk(ψ1) ) =
∨
i≤j

( [[πj , ψ2]]∧
∧

i≤k<j

[[πk, ψ1]] ) = [[πi, ψ]].

We conclude that h0 = g0. Since g0 ∈ Q0, it follows that [[π, ϕ]] = ` and we are
done. ut

Lemma 1 Under the notations of the proof of Theorem 8, we have that gi(ψ1Uψ2) =∨
i≤j(gj(ψ2) ∧

∧
i≤k<j gk(ψ1)).

Proof Since ρ is a legal run, then for every i ∈ N, it holds that

gi(ψ1Uψ2) = gi(ψ2) ∨ (gi(ψ1) ∧ gi+1(ψ1Uψ2)). (∗)

We prove the lemma by proving that for every v ∈ JI(L) it holds that gi(ψ1Uψ2) ≥
v iff

∨
i≤j(gj(ψ2) ∧

∧
i≤k<j gk(ψ1) ≥ v. The equality then follows from Birkhoff’s

theorem.
Using (∗), it is easy to prove by induction that for every index i and for every

n ∈ N it holds that

g(ψ1Uψ2) =
∨

i≤j≤n

gj(ψ2) ∧
∧

i≤k<j

gk(ψ1)

∨
gn+1(ψ1Uψ2) ∧

∧
i≤k≤n

gk(ψ1)

 .

We denote the above equation by (∗∗).
Let v ∈ JI(L) and assume that∨

i≤j

(gj(ψ2) ∧
∧

i≤k<j

gk(ψ1)) ≥ v.

Since v is join-irreducible, it follows that there exist some n ∈ N such that

gn(ψ2) ∧
∧

i≤k<n

gk(ψ1) ≥ v.

Since (∗∗) is true for every n, then in particular, we have that g(ψ1Uψ2) ≥ v, which
concludes the first direction of the proof.

For the second direction, assume that g(ψ1Uψ2) ≥ v. If there exists n ≥ i such
that

∨
i≤j≤n

(
gj(ψ2) ∧

∧
i≤k<j gk(ψ1)

)
≥ v, then we are done. Assume by way of

contradiction that there is no such n. Thus, by (∗∗), for every n ≥ i it holds that
gn+1(ψ1Uψ2) ∧

∧
i≤k≤n gk(ψ1) ≥ v, which means that gn+1(ψ1Uψ2) ≥ v and



Latticed-LTL Synthesis in the Presence of Noisy Inputs 19∧
i≤k≤n gk(ψ1) ≥ v. In particular, there cannot exist n ≥ i such that gn(ψ2) ≥ v,

otherwise it would contradict our assumption.
Since the run is accepting, there exists n1 > i such that fn1

(ψ1Uψ2) = ∅. Con-
sider the suffix of the run starting from n1 + 1. For every t ≥ n1, We have that
gt(ψ1Uψ2) ≥ v but gt(ψ2) 6≥ v. Thus, v ∈ JI(fn+1(ψ1Uψ2)), and v will never
be removed from the f component, this is in contradiction to the fact that the run is
accepting, and we are done. ut

Example 4 We demonstrate the construction presented in Theorem 8 with a par-
tial example. Consider the formula ϕ = Fp = {a, b, c}Up over the subset lattice
{2{a,b,c},⊆} and the predicate P = {{a, b}}. An example of an initial state of Aϕ,P
is a state in which g(ϕ) = {a, b}, f(ϕ) = {a} and g(p) = {b}. That is, we expect
that in the next step, the value of p will be {b, c}, which means that in order for ϕ to
get value {a, b} it remains for p to get value {a}. Then, upon reading value {b} for
p, a possible transition is to a state where g(ϕ) = {a, b}, f(ϕ) = ∅ and g(p) = {a},
which is an accepting state.

5 LLTL Synthesis

Recall that in the synthesis problem we are given an LLTL formula ϕ over sets I and
O of input and output variables, taking truth values from a lattice L, and we want
to generate an (I/O)-transducer over L all whose computations satisfy ϕ in a value
from some desired set P of satisfaction values. In the noisy setting, the transducer
may read a perturbed value of the input signals, and still all its computations need
to satisfy ϕ as required. In this section we use the construction in Theorem 8 in
order to solve both variants of the synthesis problem. In addition, we describe an
extension to a probabilistic setting in which both the noise the realizability criteria
are probabilistic.

5.1 Solving the LLTL synthesis problem

We start with the non-noisy case. Here, the algorithm is similar to the one developed
for the Boolean setting, except that the parity game is obtained from LLTL formulas:

Theorem 9 The synthesis problem for LLTL is 2EXPTIME-complete. Given an LLTL
formula ϕ over a latticeL and a predicate P ⊆ L, we can solve the synthesis problem
for 〈ϕ, P 〉 in time 2|L|

O(|ϕ|)
.

Proof Let m denote the size of L, and let n denote the length of ϕ. The construction
in Theorem 8 yields an NGBW with mO(n) states and index n. By determinizing the
NGBW we obtain an equivalent DPWDϕ,P of size 2m

O(n) logmO(n)

= 2O(n)mO(n)

=

2m
O(n)

and indexmO(n) [34,30]. Following the same lines as the proof of Theorem 1,
we see that in order to solve the LLTL synthesis problem, it suffices to solve the parity
game that is obtained fromDϕ,P , except that here the alphabets of Players 1 and 2 are



20 Shaull Almagor, Orna Kupferman

LO and LI , respectively. Accordingly, a winning memoryless strategy for Player 1 is
an (I/O)-transducer over L that realizes 〈ϕ, P 〉.

As stated in Theorem 1, the parity game that is obtained fromDϕ,P can be solved
in time (2m

O(n)

)m
O(n)

= 2m
O(n)

. We conclude that the LLTL-synthesis problem is
in 2EXPTIME. Hardness in 2EXPTIME follow from the hardness of the synthesis
problem in the Boolean setting, which corresponds to a fully-ordered lattice with two
values. ut

5.2 Solving the noisy LLTL synthesis problem

We now turn to the noisy case. Consider an LLTL formula ϕ over the atomic propo-
sitions I ∪ O, a predicate P ⊆ L, and a noise function ν : LI → 2L

I

. Recall that
the goal in noisy synthesis is to find a transducer T that realizes 〈ϕ, P 〉 with noise
ν. Our goal is to construct a DPW on which we can apply the algorithm described
in Theorem 1. For this, we proceed in three steps. First, we translate ϕ to a universal
generalized co-Büchi word automaton (UGCW). Then, we incorporate the noise in
the constructed UGCW. Finally, we determinize the UGCW to obtain a DPW, from
which we proceed as described in Theorem 1. We start by showing how to incorporate
noise in universal automata.

Lemma 2 Consider a UGCW D and a noise function ν. There exists a UGCW D′
such that D′ accepts a computation ρ iff D accepts every computation ρ′ that is
ν-indistinguishable from ρ. Moreover, D′ has the same state space and acceptance
condition as D.

Proof Let D = 〈I ∪ O,Q,Q0, δ, α〉. We obtain D′ = 〈I ∪ O,Q,Q0, δ
′, α〉 from D

by modifying δ as follows. For every σ ∈ I ∪O, let Γσ = {γ : γ|O = σ|O and γ|I ∈
ν(σ|I)}. Thus, Γσ contains all letters that are ν-indistinguishable from σ. Then, for
every state q ∈ Q, we have that δ′(q, σ) =

⋃
γ∈Γσ δ(q, γ). Thus, reading the letter σ,

the UGCW D′ simulates all the runs of D on all the letters that D may read when the
actual letter in the input is σ.

It is not hard to show that the set of runs of D′ on a computation ρ is exactly the
set of all the runs of D on all the computations that are ν-indistinguishable from ρ.
From this, the correctness of the construction follows. ut

Theorem 10 The noisy synthesis problem for LLTL is 2EXPTIME-complete. Given
an LLTL formula ϕ over a lattice L, a predicate P ⊆ L, and a noise function ν, we
can solve the synthesis problem for 〈ϕ, P 〉 with noise ν in time 2m

O(n)

.

Proof Let P = L \ P , and let Aϕ,P be the NGBW constructed for ϕ and P in
Theorem 8. Observe that Aϕ,P accepts a computation ρ iff [[ρ, ϕ]] /∈ P . Next, we
dualize Aϕ,P and obtain a UGCW Dϕ,P for the complement language, namely all
computations ρ such that [[ρ, ϕ]] ∈ P . We now apply the procedure in Lemma 2 to
Dϕ,P and obtain a UGCW D′ϕ,P that accepts a computation ρ iff Dϕ,P accepts every
computation ρ′ that is ν-indistinguishable from ρ. Next, we determinize D′ϕ,P to an
equivalent DPW D′′ϕ,P .
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We claim that the algorithm described in the proof of Theorem 1 can be applied
to D′′ϕ,P . To see this, let D′′ϕ,P = 〈I ∪ O,S, s0, η, β〉 and consider the game G that
is obtained from D′′ϕ,P . That is, G = 〈LO,LI , S, s0, η, β〉, where for every q ∈ S,
i ∈ LI , and o ∈ LO, we have that η(q, i, o) = µ(q, i ∪ o).

A (memoryless) winning strategy f for Player 1 in G is then an (I/O)-transducer
over L with the following property: for every strategy g of the environment, consider
the play ρ that is induced by f and g. The play ρ induces a computation w ∈ LI∪O
that is accepted byD′′ϕ,P . By the construction ofD′′ϕ,P , this means that for every com-
putation w′ that is ν-indistinguishable from w, the run of Dϕ,P on w′ is accepting.
Hence, [[w′, ϕ]] ∈ P , which in turn implies that f realizes 〈ϕ, P 〉 with noise ν.

We now analyze the complexity of the algorithm. Let m denote the size of L, and
let n denote the length of ϕ. By Theorem 8, the size ofAϕ,P ismO(n) and it has index
at most n. Dualizing results in a UGCW of the same size and acceptance condition,
and so is the transition to D′ϕ,P . Determinization involves an exponential blowup,

such that D′′ϕ,P is of size 2m
O(n) logmO(n)

= 2m
O(n)

and index mO(n). Finally, solv-

ing the parity game can be done in time (2m
O(n)

)m
O(n)

= 2m
O(n)

. We conclude that
the LLTL-noisy-synthesis problem is in 2EXPTIME. Hardness in 2EXPTIME again
follows from the hardness of the synthesis problem in the Boolean setting. ut

Remark 3 [A Safraless approach] The approach described in the proofs of Theo-
rems 1, 9, and 10 is Safraful, in the sense it involves a construction of a DPW. As has
been the case with Boolean synthesis [25], it is possible to proceed Safralessly also
in LLTL synthesis with noise. To see this, note that the starting point in Theorem 1
can also be a UGCW, and that Lemma 2 works with UGCWs. In more details, once
we construct a UGCW U for the specification, possibly with noise incorporated, the
Safraless approach expands U to a universal co-Büchi tree automaton that accepts
winning strategies for the system in the corresponding synthesis game, and checks
its emptiness. In terms of complexity, rather than paying an additional exponent in
the translation of the specification to a deterministic automaton, we pay it in the non-
emptiness check of the tree automaton. ut

Remark 4 [Noisy output signals] Noisy input signals are often considered in settings
where the output can also be perturbed. Indeed, assuming the system and the envi-
ronment interact along noisy channels, there is no reason to assume that the output
signals are immunized against noise. In our setting, we can consider the case where
there is also a noise function on the outputs, and the goal is to synthesize a trans-
ducer whose output, after perturbation, realizes the specification. More formally, no
matter how the output is perturbed (assuming a known noise function), the generated
computation should satisfy the specification. ut

Going over the proof of Lemma 2, it is not hard to see that a similar construc-
tion can be applied to the outputs, which would enable us to use the construction in
Theorem 10 and solve the noisy-synthesis problem in the presence of noisy outputs.
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5.3 Probabilistic noise

Our definition of noisy synthesis takes a worst-case approach. Indeed, a transducer
does not realize a specification even if there is a single input sequence for which the
resulting noisy computation does not satisfy the specification. In practice, however,
noise typically occurs according to some probability, for which the worst-case ap-
proach may not be appropriate. Consider, for example, a noisy channel that may flip
a bit with some positive probability p. A corresponding noise function should allow
the input 1 (that is, an input signal that takes values in {0, 1} and whose actual value
is 1) to be read as 0 with some positive probability. Then, no non-trivial specification
is realizable, as all computations are indistinguishable. In practice, however, the event
where a computation differs significantly from its noisy version has low probability.
Thus, we can relax the worst-case approach, and require that given a noise function
with the respective noise probabilities, we synthesize a transducer that realizes the
specification with maximal probability.

Formally, a probabilistic noise function is ν : LI → ∆(LI) where ∆(LI) =
{f : LI → [0, 1] :

∑
i∈LI f(i) = 1} is the set of probability functions over LI . In-

tuitively, for inputs i, j ∈ LI , we have that ν(i)(j) is the probability that input j is
read by the system when the environment generates input i. Given an input sequence
π ∈ (LI)ω , we obtain from ν a probability distribution Prν,π over (LI)ω in the
standard manner, by considering cylinder sets (see e.g., [5]).

Consider an LLTL formula ϕ over I∪O, a predicate P ⊆ L, a probabilistic noise
function ν, a transducer T , and a threshold t ∈ [0, 1]. We say that T realizes 〈ϕ, P 〉
with probability t under noise ν if for every computation π ∈ LI , we have that the
probability that T realizes ϕ with a value in P , given a computation π′ distributed
according to Prν,π , is at least t.

The Probabilistic noisy-synthesis problem for LLTL is then to synthesize, given
ϕ, P , and ν as above, a transducer T that maximizes the value t for which T realizes
〈ϕ, P 〉 with probability t under noise ν.

Theorem 11 The probabilistic noisy-synthesis problem for LLTL is in 2NEXPTIME
∩ co-2NEXPTIME. Given an LLTL formula ϕ over a lattice L, a predicate P ⊆ L,
and a probabilistic noise function ν, we can solve the probabilistic noisy-synthesis
problem for 〈ϕ, P 〉 and ν in time 2m

O(n)

.

Proof Similarly to Theorem 9, we start by obtaining from ϕ and P a DPW Dϕ,P of
size 2m

O(n)

and index mO(n), where m is the size of L, and n is the length of ϕ. We
then obtain from Dϕ,P a parity game Gϕ,P = 〈2O, 2I , Q, q0, η, α〉 as per the proof
of Theorem 1. We now incorporate the noise function ν into Gϕ,P as follows. Recall
that η : Q × 2I × 2O → Q is such that η(q, i, o) = δ(q, i ∪ o), where Q and δ are
the states and transition function of Dϕ,P , respectively. We define a 2 1

2 player parity
game [10] D′ϕ,P,ν = 〈2O, 2I , Q, q0, η′, α〉, where η′ : Q × 2O × 2I → ∆(Q) is the
probabilistic transition function given by setting η′(q, o, i) to be the distribution that
assigns to the state δ(q, i′ ∪ o) the probability ν(i)(i′) that input i′ is read when the
environment generates input i.

It is not hard to see that a strategy for the system that wins with probability t
corresponds to a transducer that realizes 〈ϕ, P 〉 with probability t under noise ν.
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In [10], the authors prove that the system player in a 2 1
2 -game has a deterministic

and memoryless strategy that maximizes the probability of winning, and that finding
it can be done in NP∩coNP. Such a strategy corresponds to a transducer that maxi-
mizes the probability of realizing ϕ with a value in P . Since the size of the game is
doubly exponential, we conclude that the probabilistic-noise synthesis problem is in
2NEXPTIME∩co-2NEXPTIME. ut

6 Local Stability Revisited

In Section 3.2 we studied stability and proved that not all LLTL formulas are locally
stable (see Theorem 7). This gives rise to the question of deciding whether a given
LLTL formula is locally stable. In the context of synthesis, if ϕ is known to be locally
stable and we have a transducer T that realizes 〈ϕ, P 〉 with no noise, we know that T
realizes 〈ϕ, P ⊕γ〉 with noise νγ , where νγ(σ) = {τ : d(σ, τ) ≤ γ}, and P ⊕γ is the
extension of P to noise νγ . Thus, ` ∈ P ⊕ γ iff there is `′ ∈ P such that d(`, `′) ≤ γ.

Theorem 12 Given an LLTL formula ϕ over a lattice L, deciding whether ϕ is
locally stable is PSPACE-complete.

Proof In order to show that the problem is in PSPACE, we consider the following,
more general, problem: given an LLTL formula ϕ and a noise-threshold γ, we want
to compute the maximal distraction, denoted ∆ϕ,γ , that noise γ may cause to ϕ.
Formally,

∆ϕ,γ = max {d([[π, ϕ]], [[π′, ϕ]]) : π, π′ ∈ (LAP )ω and ld(π, π′) ≤ γ}.

Observe that finding ∆ϕ,γ allows us to decide local stability by iterating over all ele-
ments γ ∈ {1, . . . , |L|} and verifying that ∆ϕ,γ ≤ γ. Furthermore, in order to com-
pute ∆ϕ,γ , it is enough to decide whether ∆ϕ,γ ≤ µ for a threshold µ ∈ {1, ..., |L|},
since we can then iterate over thresholds.

We solve the dual problem, namely deciding whether there exist π, π′ ∈ (LAP )ω
such that ld(π, π′) ≤ γ and d([[π, ϕ]], [[π′, ϕ]]) > µ. In order to solve this problem, we
proceed as follows. In Theorem 8 we showed how to construct an NGBW Aϕ,` such
that Aϕ,` accepts a computation π iff [[π, ϕ]] = `. In Section 5.2, we showed how to
construct a UGCW D′ϕ,`⊕µ such that D′ϕ,`⊕µ accepts π iff [[π′, ϕ]] ∈ `⊕ µ for every
computation π′ that is νγ-indistinguishable from π. Now, there exist π, π′ ∈ (LAP )ω
such that ld(π, π′) ≤ γ and d([[π, ϕ]], [[π′, ϕ]]) > µ iff there exists ` ∈ L such that
[[π, ϕ]] = ` and the latter conditions hold. Observe that these conditions hold iff there
exists a computation π that is accepted by Aϕ,` but not by D′ϕ,`⊕µ. Thus, it suffices
to decide whether L(Aϕ,`) ∩ L(D′ϕ,`⊕µ) = ∅ for every ` ∈ L.

Finally, we analyze the complexity of this procedure. Let |L| = m and |ϕ| = n.
Complementation of D′ϕ,`⊕µ can be done by constructing D′

ϕ,`⊕µ. Hence, both Aϕ,`
and D′ϕ,`⊕µ have mO(n) states. Checking the emptiness of their intersection can be
done on-the-fly in PSPACE.

As discussed above, this suggest a PSPACE algorithm for deciding local stability.
We now complete the picture by presenting a matching lower bound.
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We prove hardness by describing a polynomial time reduction from the satisfia-
bility problem for LTL to the complement of the local-stability problem.

Consider an LTL formula ϕ over AP . We assume that ϕ is not valid, thus there is
a computation that does not satisfy it (clearly LTL satisfiability is PSPACE-hard also
with this promise). We construct an LLTL formula ψ over the lattice L = 〈2{a,b},⊆〉
as follows. LetAP ′ = {p′ : p ∈ AP} be a tagged copy ofAP . We define ψ = ϕ∨ϕ′
over AP ∪ AP ′, where ϕ′ is obtained form ϕ by replacing each atomic proposition
by its tagged copy. Clearly this reduction is polynomial. We now show that ϕ is
satisfiable iff ψ is not locally stable.

Consider ϕ as an LLTL formula over L. We observe that if there exists a com-
putation π such that [[π, ϕ]] = {a}, then there exists a computation τ such that
[[τ, ϕ]] = {b}. Indeed, the lattice L is symmetric and ϕ does not contain elements
of the form {a} or {b} to break the symmetry. Thus, we can obtain τ by swapping
the roles of a and b in π. From Theorem 3 we know that L is pointed, so in this case
there also exists a computation ρ such that [[ρ, ϕ]] = {a, b}.

We first prove that ifϕ is not satisfiable, thenψ is locally stable. Observe that if we
view ϕ as an LLTL formula and there exists a computation π such that [[π, ϕ]] = {a},
then ϕ is satisfiable as an LTL formula. Indeed, a satisfying computation π′ for ϕ
can be obtained from π by defining p ∈ π′i iff a ∈ πi(p) for all p ∈ AP and i ≥ 0.
Thus, if ϕ is not satisfiable, then [[π, ϕ]] = ∅ for every computation π ∈ (LAP )ω , and
similarly [[π′, ψ]] = ∅ for every π′ ∈ (LAP∪AP ′

)ω . Hence, ψ is locally stable.
For the second direction, assume that ϕ is satisfiable. Thus, there exists a com-

putation π ∈ (2AP )ω such that π |= ϕ. By our assumption, there also exists a com-
putation π′ such that π′ 6|= ϕ. It is easy to see that by identifying True with {a, b}
and False with ∅, we get [[π, ϕ]] = {a, b} and [[π′, ϕ]] = ∅. For a computation
w ∈ (LAP )ω , let ŵ ∈ (LAP∪AP ′

)ω be the computation obtained from w by copying
the behavior of the atoms in AP to their tagged atoms. Thus, for all i ≥ 0, we have
p, p′ ∈ ŵi iff p ∈ wi.

Since the maximal distance between elements in L is 2, there exists a computa-
tion τ such that ld(π′, τ) ≤ 1 and ld(τ, π) ≤ 1. That is, we can “get” from π′ to π
by two local changes of 1. From this follows that ld(π̂′, τ̂) ≤ 1 and ld(τ̂ , π̂) ≤ 1.
Consider [[τ, ϕ]]. If [[τ, ϕ]] = {a, b}, then ψ is not locally stable, since ld(π̂′, τ̂) ≤
1 but d([[τ̂ , ψ]], [[π̂′, ψ]]) = 2. Similarly, if [[τ, ϕ]] = ∅, then ψ is not locally sta-
ble. Otherwise, w.l.o.g [[τ, ϕ]] = {a}. Then, there exists a computation τ ′ such that
[[τ ′, ϕ]] = {b}. The computation τ ′ is obtained by swapping a and b in τ . Ob-
serve that since π′ contains only symmetric elements from L (i.e. ∅ and {a, b}), then
ld(π′, τ) = ld(π′, τ ′) ≤ 1. Finally, since AP and AP ′ are disjoint, then by assigning
τ over AP and τ ′ over AP ′, we obtain a computation ρ such that ld(π̂′, ρ) ≤ 1 but
[[ρ, ψ]] = {a} ∨ {b} = {a, b}, and ψ is not locally stable. ut

7 Discussion

We introduced and studied the noisy-synthesis problem, where we seek a transducer
that realizes a multi-valued specification in LLTL in the highest possible satisfaction
value, in the presence of noisy input signals. Our study includes relevant properties
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of multi-valued specification formalisms, like their global and local stability, which
essentially measure the sensitivity of the satisfaction value of specifications to pertur-
bations on the input signals. We prove that the noisy-synthesis problem for LLTL is
2EXPTIME-complete, as is traditional LTL synthesis.

Our future research includes the following directions. (1) The logic LLTL is a
multi-valued logic in which values are taken from and manipulated according to a
lattice. While many scenarios can be captured by the two lattices on which we focus,
there is growing interest in weighted formalisms and multi-valued temporal logics
that can express rich behaviors over a wide range of domains. For example, the multi-
valued logics LTL[F] and LTLdisc[D] [2] can express the quantitative propositional
and temporal aspects of computations, and can, for example, prioritize different sat-
isfaction possibilities or refer to the waiting time to the satisfaction of eventualities.
The logics can be interpreted with respect to both Boolean and multi-valued compu-
tations. From a technical point of view, our solution to the noisy-synthesis problem is
based on a translation of LLTL formulas to automata. For other multi-valued logics,
and in particular for LTLdisc [D], where the set of possible satisfaction values is not
bounded, such a translation is not always possible. We plan to investigate the exten-
sion of the noisy-synthesis problem to richer multi-valued logics, and in particular
to LTL[F] and LTLdisc [D]. (2) In some settings, the designer can control the noise.
Such a control requires resources, say sensors of high quality. In the budgeted noisy-
synthesis problem, we are given, together with the noise function ν, also a budget and
information on the cost of reducing noise. The goal is to use the budget in a way that
would generate a transducer with the highest possible satisfaction value. Note that
the information about the cost can be of different types. For example, it may refer to
the cost of reducing the noise of a particular input signal in a single state of the trans-
ducer, in specific time points, or throughout the computation, and the same for sets
of input signals. This is related to the different ways in which the cost of sensing may
be defined [3], and also to a formalization of the trade-offs among the noise that the
system experiences, its size, and the best satisfaction value that it can guarantee. We
plan to relate noisy-synthesis and sensing-cost-aware synthesis, and to study these
trade-offs.
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