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Abstract
In the classical synthesis problem, we are given a linear temporal logic (LTL) formula ψ over sets of input
and output signals, and we synthesize a transducer that realizes ψ: with every sequence of input signals,
the transducer associates a sequence of output signals so that the generated computation satisfies ψ. One
weakness of automated synthesis in practice is that it pays no attention to the quality of the synthesized
system. Indeed, the classical setting is Boolean: a computation satisfies a specification or does not satisfy
it. Accordingly, while the synthesized system is correct, there is no guarantee about its quality. In recent
years, researchers have considered extensions of the classical Boolean setting to a quantitative one. The
logic LTL[F ] is a multi-valued logic that augments LTL with quality operators. The satisfaction value
of an LTL[F ] formula is a real value in [0, 1], where the higher the value is, the higher is the quality in
which the computation satisfies the specification.

Decision problems for LTL become search or optimization problems for LTL[F ]. In particular, in
the synthesis problem, the goal is to generate a transducer that satisfies the specification in the highest
possible quality. Previous work considered the worst-case setting, where the goal is to maximize the
quality of the computation with the minimal quality. We introduce and solve the stochastic setting, where
the goal is to generate a transducer that maximizes the expected quality of a computation, subject to a
given distribution of the input signals. Thus, rather than being hostile, the environment is assumed to
be probabilistic, which corresponds to many realistic settings. We show that the problem is 2EXPTIME-
complete, like classical LTL synthesis. The complexity stays 2EXPTIME also in two extensions we
consider: one that maximizes the expected quality while guaranteeing that the minimal quality is, with
probability 1, above a given threshold, and one that allows assumptions on the environment.

1 Introduction

Synthesis is the automated construction of a system from its specification: given a linear temporal
logic (LTL) formula ψ over sets I and O of input and output signals, we synthesize a finite-state
system that realizes ψ [11, 19]. At each moment in time, the system reads a truth assignment,
generated by the environment, to the signals in I , and it generates a truth assignment to the signals in
O. Thus, with every sequence of inputs, the system associates a sequence of outputs. The system
realizes ψ if all the computations that are generated by the interaction satisfy ψ.

One weakness of automated synthesis in practice is that it pays no attention to the quality of the
synthesized system. Indeed, the classical setting is Boolean: a computation satisfies a specification or
does not satisfy it. Accordingly, while the synthesized system is correct, there is no guarantee about
its quality. This is a crucial drawback, as designers would be willing to give-up manual design only if
automated-synthesis algorithms return systems of comparable quality. In recent years, researchers
have considered several extensions and variants of the classical setting of synthesis. One class of
extensions stays in the Boolean setting. For example, in practice we can often make assumptions on
the behavior of the environment. An assumption may be direct, say given by an LTL formula that
restricts the set of possible sequences of inputs [7], or conceptual, say rationality from the side of
the environment, which may have its own objectives [15], or a bound on the size of the environment
and/or the generated system [20, 16]. Another class of extensions moves to a quantitative setting,
where a specification may have different satisfaction values in different systems. For example, in [3],
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the input to the synthesis problem includes also Mealy machines that grade different realizing systems.
As another example, in [1], the specification formalism is the multi-valued logic LTL[F ], which
augments LTL with quality operators. The satisfaction value of an LTL[F ] formula is a real value
in [0, 1], where the higher the value is, the higher is the quality in which the computation satisfies
the specification. The synthesis algorithm then seeks systems of the highest possible quality. A
quantitative approach can be taken also with Boolean specifications and involves a probabilistic view:
the environment is assumed to generate input sequences according to some probability distribution.
Then, instead of requiring the system to satisfy the specification in all computations generated by the
environment, we measure the probability with which this happens [17].

Combining the multi-valued approach with the probabilistic one has led to the use of Markov
Decision Processes (MDPs). Indeed, MDPs are a clean mathematical model that allows the analysis
of quantitative objectives in a probabilistic environment. The intricacy of MDPs has led, in turn, to
a plethora of works on synthesis with various constraints and reward models (e.g. [2, 6, 8, 10, 12]).
The starting point of these works is the MDPs. This is puzzling, as while MDPs offer a very clean
framework for the analysis, they do not serve as a specification formalism. Thus, the crucial step of
actually obtaining the MDPs is missing.

In this work, we consider stochastic high-quality synthesis, which combines the multi-valued
approach with the probabilistic one. We build on known techniques for MDPs, and still keep the
specification formalism accessible to designers. The specification is given by an LTL[F ] formula,
the environment is assumed to be probabilistic, and we seek a system that maximizes the expected
satisfaction value. To explain the setting better, let us first review shortly LTL[F ]. The linear temporal
logic LTL[F ] extends LTL with an arbitrary set F of functions over [0, 1]. Using the functions in F ,
a specifier can formally and easily prioritize the different ways of satisfaction. The logic LTL[F ] is
really a family of logics, each parameterized by a set F ⊆ {f : [0, 1]k → [0, 1] | k ∈ N} of functions
(of arbitrary arity) over [0, 1]. For example, as in earlier work on multi-valued extensions of LTL
(c.f., [13]), the set F may contain the min {x, y}, max {x, y}, and 1 − x functions, which are the
standard quantitative analogues of the ∧, ∨, and ¬ operators. The novelty of LTL[F ] is the ability
to manipulate values by arbitrary functions. For example, F may contain the quantitative operator
Oλ, for λ ∈ [0, 1], which tunes down the quality of a sub-specification. Formally, the satisfaction
value of the specification Oλϕ is the multiplication of the satisfaction value of ϕ by λ. Another useful
operator is the weighted-average function ⊕λ. There, the satisfaction value of the formula ϕ⊕λ ψ is
the weighted (according to λ) average between the satisfaction values of ϕ and ψ. This enables the
quality of the system to be an interpolation of different aspects of it. As an example, consider the
LTL[F ] formula ϕ = G(req → (grant ⊕ 2

3
Xgrant)). The formula specifies the fact that we want

requests to be granted immediately and the grant to hold for two transactions. When this always
holds, the satisfaction value is 2

3 + 1
3 = 1. We are quite okay with grants that are given immediately

and last for only one transaction, in which case the satisfaction value is 2
3 , and less content when

grants arrive with a delay, in which case the satisfaction value is 1
3 .

Consider a system that receives requests and generates grants and consider a specification ψ that
have ϕ above as a sub-formula. Other sub-formulas of ψ may require the system to generate as
few grants as possible, say with ϕ′ = (FG(¬req)) → (G¬(grant ∧ Xgrant)). That is, if requests
eventually stop arriving, then there cannot be two successive grants. The specification ψ cannot be
realized with satisfaction value 1, as the system does not know in advance whether requests eventually
stops arriving. Therefore, in order to get a satisfaction value above 0 in the subformula ϕ′, the system
must not generate two successive grants, bounding the satisfaction value of the subformula ϕ by 2

3 .
If, however, the input signals are distributed so that req may hold with a positive probability at each
moment in time, then the probability that an input sequence satisfies FG(¬req) is 0, causing ϕ′ to be
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satisfied (that is, to have satisfaction value 1) with probability 1. Accordingly, under this assumption,
a system that grants requests immediately and for two transactions has expected satisfaction value 1.

Formally, one can measure the quality of a system S with respect to an LTL[F ] specification
taking three approaches. In the worst-case approach, the environment is assumed to be hostile and
we care for the minimal satisfaction value of some computation of S. In the almost-sure approach,
the environment is assumed to be stochastic and we care for the maximal satisfaction value that is
generated with probability 1. Then, in the stochastic approach, the environment is assumed to be
stochastic and we care for the expected satisfaction value of the computations of S, assuming some
given distribution on the inputs sequences.

I Example 1. Consider a battery-replacement controller for a certain hardware. A computation of
the hardware lasts k steps. Some steps during the execution are stations, in which the battery can
be replaced. For example, the hardware may be an electric car whose battery can only be replaced
at charging stations. The controller should decide at which stations it replaces the battery. On the
one hand, it is wasteful to replace the battery early. On the other hand, the occurrence of stations is
random, and the controller does not know whether stations are going to be encountered in the future.

Since it is wasteful to replace the battery early, the specification states that replacing it in step
1 ≤ t ≤ k lowers the satisfaction value to t/k. Missing, however, all stations incurs satisfaction value
0. We assume that each step is a station with probability p ∈ [0, 1].

Formally, the specification for the controller is over the sets I = {station} and O = {replace},
and is a conjunction ϕ1∧ϕ2∧ϕ3 of three LTL[F ] formulas (the abbreviation Xi stands for a sequence
of i nested X (next) operators):

ϕ1 = G(replace → station), which requires that we only replace the battery in stations,
ϕ2 = (

∨
1≤t≤k Xkstation)→ (

∨
1≤t≤k Xkreplace), which states that the requirement to replace

the battery needs to be satisfied only if at least one station has been encountered.
ϕ3 =

∧
1≤t≤k Xt(¬replace ∨ O t

k
replace), which lowers the satisfaction value to t0

k , for the
minimal step 1 ≤ t0 ≤ k in which the battery is replaced.

In order to ensure a positive satisfaction value in the worst case, a transducer must replace the
battery on the first station it encounters. Such a transducer guarantees a satisfaction value of 1

k , but
has expected satisfaction value of (1− p)k(1− 1

k ) + 1
k , which tends to 0 as k increases.

Trading-off the satisfaction value in the worst case for a higher expected satisfaction value, a
controller may also replace the battery in later stations. For example, a transducer that replaces the
battery only in the k-th step (if it is a station) has expected satisfaction value (1− p)k + p. However,
its satisfaction value in the worst case, in fact in (1− p) of the computations, is 0.

In Appendix A we analyze the expected satisfaction value of a transducer that replaces the battery
in the first station after position t, for 1 ≤ t ≤ k, and show, for example, that a transducer that
replaces the battery starting in position k

2 has an expected satisfaction value that tends to 1
2 as k →∞,

for every fixed p ∈ (0, 1). J

The worst case approach has been studied in [1], where it is shown how to synthesize, given
ϕ, a system with a maximal worst-case satisfaction value. In this paper, we consider the two other
approaches. We model a reactive system with sets I and O of input and output signals, respectively,
by an I/O-transducer: a finite-state machine whose transitions are labeled by truth assignments to
the signals in I and whose states are labeled by truth assignments to the signals in O. We define and
solve the stochastic high-quality synthesis problem (SHQSyn, for short). The input to the problem
is an LTL[F ] formula ϕ over I ∪ O, and we seek an I/O-transducer that maximizes the expected
satisfaction value of a computation, under a given distribution of the inputs. We show that the maximal
expected satisfaction value is always attained by a finite-state transducer, and that computing such a
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transducer takes time that is doubly-exponential in ϕ, thus the problem is not more complex than the
synthesis problem for LTL.

We continue to study two extensions of the SHQSyn problem. In the first extension, we add a
lower bound on the satisfaction value that should be attained almost surely. Formally, the input to the
SHQSyn with threshold problem is an LTL[F ] formula ϕ and a threshold t ∈ [0, 1], and we seek a
transducer that maximizes the expected satisfaction value of ϕ, but such that the satisfaction value of
ϕ in all its computations is at least t with probability 1. As we show, adding this restriction may lower
the expected value. Also, our solution to the SHQSyn with threshold problem generalizes high-quality
synthesis in the almost-sure approach, which we solve too. This approach has been studied for MDPs
in [10, 12]. We show that while we can readily apply the existing solutions, the fact that our original
specification is an LTL[F ] formula allows us to obtain slightly better solutions, with simpler analysis.

The second extension is the quantitative analogue of synthesis with environment assumptions. As
discussed above, adding assumptions on the environment is a useful extension in the Boolean setting
[7, 18]. In the SHQSyn with environment assumption problem we get as input an LTL[F ] formula
ϕ and an environment assumption ψ, given by means of an LTL formula, and we seek a transducer
that maximizes the expected satisfaction value of ϕ in computations that satisfy ψ. We note that
the ability to reason about the quality of satisfaction in the presence of environment assumptions
suggests a quantitative solution to challenges that appear already in the Boolean setting. For example,
in [4], the authors study the annoying phenomenon of systems realizing a specification by causing the
assumption to fail. They suggest a synthesis algorithm that increases the cooperation between the
system and its environment. Using LTL[F ], we can associate such a cooperation with high quality.
We show that both extensions, of threshold and assumptions, as well as their combination, do not
increase the complexity of the synthesis problem.

From a technical perspective, solving the Boolean synthesis problem amounts to translating an
LTL formula to a deterministic parity automaton (DPW), viewing this automaton as a two-player
parity game in which the system plays against the environment, and finding a winning strategy for the
system. When the environment is assumed to be stochastic, the two-player game becomes a Markov
decision process (MDP) with a parity objective. Such MDPs were extensively studied in [6, 8]. In
order to handle the quantitative satisfaction values of LTL[F ], we translate an LTL[F ] formula ϕ to a
set of DPWs associated with the different possible satisfaction values of ϕ. From the latter we obtain
a mean-payoff MDP. We show that a transducer that attains the maximal expected satisfaction value
is embodied in this MDP, and can be found in polynomial time. The analysis of the MDP is based
on a search for controllably win recurrent states [8]. Adding a threshold t ∈ [0, 1], the strategies of
the MDP are restricted to those that guarantee that the computation reaches, with probability 1, end
components that correspond to accepting runs of DPWs associated with satisfaction values above t.

Finally, in order to handle environment assumptions, we need to maximize the conditional
expected satisfaction value, given the assumption. Maximizing conditional expectation is notoriously
difficult, as, unlike unconditional expectation, it is not a linear objective. Thus, it is not susceptible
to linear optimization techniques, which are the standard approach to find maximizing strategies in
MDPs. In our solution, we compose the MDP with the DPW for the assumption, which enables
us to adopt techniques used in the context of conditional probabilities in MDPs [2]. Intuitively, we
add to the MDP transitions that “redistributes” the probability of computations that do not satisfy
the assumption. In both cases, the size of the analyzed MDP stays doubly exponential in ϕ (and the
assumption, in the latter case), and the required transducer is embodied in it.

Due to lack of space, most proofs appear in the appendix.
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2 Preliminaries

2.1 Automata and Transducers

A (deterministic) pre-automaton is a tuple 〈Σ, Q, q0, δ〉, where Σ is a finite alphabet, Q is a finite set
of states, q0 ∈ Q is an initial state, and δ : Q × Σ 9 Q is a (partial) transition function. A run of
the pre-automaton on a word w = σ1 · σ2 · · · ∈ Σω is a sequence of states q0, q1, q2, . . . such that
qj+1 = δ(qj , σj+1) for all j ≥ 0. Note that since δ is deterministic, the pre-automaton has at most
one run on each word.

A deterministic parity automaton (DPW, for short) is A = 〈Σ, Q, q0, δ, α〉, where 〈Σ, Q, q0, δ〉
is a pre-automaton, δ is a total function, and α : Q→ {1, ..., d} is an acceptance condition that maps
states to ranks. The maximal rank d is the index of A. For a run r = q0, q1, q2, . . . of A, let inf(r)
be the set of states that occur in r infinitely often. Formally, inf(r) = {q : qj = q for infinitely
many j ≥ 0}. The run r is accepting if the maximal rank of a state in inf(r) is even. Formally,
maxq∈inf(r){α(q)} is even. A word w ∈ Σω is accepted by A if the run of A on w is accepting. The
language of A, denoted L(A), is the set of words that A accepts.

For finite sets I and O of input and output signals, respectively, an I/O transducer is T =
〈I,O,Q, q0, δ, µ〉, where 〈2I , Q, q0, δ〉 is a pre-automaton, and µ : Q → 2O is a labeling function
on the states. Intuitively, T models the interaction of an environment that generates in each moment
in time a letter in 2I with a system that responds with letters in 2O. Consider an input word
w = i0 · i1 · · · ∈ (2I)ω and let q0, q1, . . . be the run of T on w. The output of T on w is then
o1, o2, . . . ∈ (2O)ω, where oj = µ(qj) for all j ≥ 1. Note that the first output assignment is that of
q1, thus µ(q0) is ignored. This reflects the fact that the environment initiates the interaction. The
computation of T on w is then T (w) = i0 ∪ o1, i1 ∪ o2, . . . ∈ (2I∪O)ω .

2.2 Markov Chains and Markov Decision Processes

A Markov chain (MC, for short)M = 〈S, s0, P 〉 consists of a finite or countably-infinite state space
S, an initial state s0 ∈ S, and a stochastic transition function P : S × S → [0, 1]. That is, for
all s ∈ S, we have

∑
s′∈S P (s, s′) = 1. Intuitively, when a run ofM is in state s, then it moves

to state s′ with probability P (s, s′). A run of M is a finite or infinite sequence s0, s1, s2, ... of
states that starts in s0. The MCM induces a probability space on finite runs. Consider a finite run
r = s0, s1, ..., sk. We define Pr(r) =

∏k−1
i=1 P (si, si+1). Thus, the probability of a finite run is the

product of the probabilities of its transitions. Let Cone(r) be the set of all infinite runs that start with
r. The MCM induces a probability space over the set of infinite runs ofM that are generated by the
cylinder sets Cone(r), for finite runs r. Formally, for every r ∈ S∗, we have Pr(Cone(r)) = Pr(r).

An ergodic component of M is a strongly connected component of M from which no other
component is reachable. Formally, it is a set C ⊆ S such that for every s, t ∈ C there exist a path
s1, s2, ..., sk of states in C such that s1 = s, sk = t, and P (sj , sj+1) > 0 for every 1 ≤ j ≤ k. In
addition, for every s ∈ C and t /∈ C, it holds that P (s, t) = 0. Let C be the set of maximal (w.r.t.
containment) ergodic components ofM. We associate withM an ergodic reachability probability
ρ : C → [0, 1] such that ρ(C) is the probability that a run of M reaches (and therefore remains
forever in) C.

A Markov decision process (MDP) is M = 〈S, s0, (As)s∈S ,P, γ〉, where S is a finite set of
states, s0 ∈ S is an initial state, and As is a finite set of actions that are available in state s ∈ S. Let
A =

⋃
s∈S As. Then, P : S ×A× S 9 [0, 1] is a (partial) stochastic transition function: for every

two states s, s′ ∈ S and action a ∈ As, we have that P(s, a, s′) is the probability of moving from s to
s′ when action a is taken. Accordingly, for every s ∈ S and a ∈ As, we have

∑
s′∈S P(s, a, s′) = 1.

Finally, γ : S → R is a reward function on the states.
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An MDP can be thought of as a game between a player, who chooses the action to be taken in each
state, and nature, which stochastically chooses the next state according to the transition probabilities.
The goal of the player is to maximize the average reward along the generated run in the MDP. We
now formalize this intuition.

A strategy for the player in an MDPM (a strategy forM, in short) is a function f : S+ → A that
suggests to the player an action to be taken given the history of the game so far. The strategy should
suggest an available action, thus f(s0, . . . , sn) ∈ Asn . A strategy is memoryless if it depends only
on the current state. We can describe a memoryless strategy by f : S → A, where again, f(s) ∈ As.

Given a strategy f , we can obtain fromM the MCMf = 〈S+, s0, Pf 〉 in which the choice of
actions is resolved according to f . Formally, if u, u′ ∈ S+ are such that there are t ∈ S∗ and s, s′ ∈ S
such that u = t · s and u′ = t · s · s′, then Pf (u, u′) = P(s, f(t · s), s′). Otherwise, Pf (u, u′) = 0.
Note thatMf has an infinite state space. If f is memoryless, we can simplify the construction, and
defineMf = 〈S, s0, Pf 〉 with Pf (s, s′) = P(s, f(s), s′).

An end component in an MDPM is a set C ⊆ S such that there exist action sets (Bs)s∈S with
Bs ⊆ As for every s ∈ S, and for every s, t ∈ C, there exists a path s1, s2, ..., sk of states in C such
that s1 = s, sk = t and there exist actions a1, ..., ak−1 such that P(sj , ai, sj+1) > 0 and ai ∈ Bsj
for every 1 ≤ j ≤ k. In addition, for every s ∈ C and a ∈ Bs it holds that

∑
t∈C P(s, a, t) = 1.

Intuitively, an end component is a strongly-connected component in the MDP graph that nature cannot
force to leave. Equivalently,M has a strategy to stay forever in C. Indeed, it is not hard to see that C
is an end component iff there is some strategy f forM such that C is an ergodic component ofMf .

The value valM(f) (we omit the subscript whenM is clear from context) of a strategy f forM
is the expected average reward of an infinite run inMf . Formally, for a run r = s0, s1, s2, . . . of
Mf , we define γ(r) = lim infm→∞ 1

m

∑m
j=0 γ(sj), where for a state s ∈ S+ ofMf , the cost γ(s)

is induced by the last state ofM in s. In the stochastic setting, we view each sequence of inputs, and
hence also each run r and the reward on r, as a random variable. The expected value of a random
variable is, intuitively, its average value, weighted by probabilities. Let RM,f be the random variable
whose value is the reward on runs inMf . We define valM(f) = E[RM,f ]. The value val(M) of an
MDPM is the maximal value of a strategy inM. It is well known (see e.g. [14]) that val(M) can
be attained by a memoryless strategy, which can be computed in polynomial time.

For technical reasons, we sometimes use variants of MDPs. A pre-MDP is an MDP with no
reward function. A parity MDP is a pre-MDP with a parity acceptance condition α : S → {1, ..., d}.
In a parity MDP, the goal of the player is to maximize the probability that the generated run satisfies
the parity condition. Parity-MDPs were extensively studied in e.g. [9].

2.3 The logic LTL[F ]

The logic LTL[F ] is a multi-valued logic that extends the linear temporal logic LTL with an arbitrary
set of functions F ⊆ {f : [0, 1]k → [0, 1] : k ∈ N} called quality operators. For example, F may
contain the maximum or minimum between the satisfaction values of subformulas, their product,
and their average. This enables the specifier to refine the Boolean correctness notion and associate
different possible ways of satisfaction with different truth values [1].

Let AP be a set of Boolean atomic propositions and let F be a set of function as described above.
An LTL[F ] formula is one of the following:

True, False, or p, for p ∈ AP .
f(ϕ1, ..., ϕk), Xϕ1, or ϕ1Uϕ2, for LTL[F ] formulas ϕ1, . . . , ϕk and a function f ∈ F .

The semantics of LTL[F ] formulas is defined with respect to infinite computations over 2I∪O. For
a computation π = π0, π1, . . . ∈ (2I∪O)ω and position j ≥ 0, we use πj to denote the suffix
πj , πj+1, . . .. The semantics maps a computation π and an LTL[F ] formula ϕ to the satisfaction
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value of ϕ in π, denoted [[π, ϕ]]. The satisfaction value is in [0, 1] and is defined inductively as
described in Table 1 below.

Formula Satisfaction value Formula Satisfaction value

[[π, True]] 1 [[π, f(ϕ1, ..., ϕk)]] f([[π, ϕ1]], ..., [[π, ϕk]])
[[π, False]] 0 [[π,Xϕ1]] [[π1, ϕ1]]

[[π, p]] 1 if p ∈ π0

0 if p /∈ π0
[[π, ϕ1Uϕ2]] max

0≤i<|π|
{min{[[πi, ϕ2]], min

0≤j<i
[[πj , ϕ1]]}}

Table 1 The semantics of LTL[F ].

The logic LTL can be viewed as LTL[F ] for F that models the usual Boolean operators. For
simplicity, we use the common such functions as abbreviation, as described below. In addition, we
introduce notations for two useful quality operators, namely factoring and weighted average. Let
x, y, λ ∈ [0, 1]. Then,

• ¬x = 1− x • x ∨ y = max {x, y} • x ∧ y = min {x, y}
• x→ y = max {1− x, y} • Oλx = λ · x • x⊕λ y = λ · x+ (1− λ) · y

I Example 2. Consider a scheduler that receives requests and generates grants and consider the
LTL[F ] formula ϕ = ϕ1 ∧ ϕ2, with ϕ1 = G(req → X(grant ⊕ 2

3
Xgrant)) and ϕ2 = ¬(O 3

4
G¬req).

The satisfaction value of the formula ϕ1 is 1 if every request is granted in the next cycle and the grant
lasts for two consecutive cycles. If the grant lasts for only one cycle, then the satisfaction value is
reduced to 2

3 if it is the cycle right after the request, and to 1
3 if it is the next one. In addition, the

conjunction with ϕ2 implies that if there are no requests, then the satisfaction value is at most 1
4 . The

example demonstrates how LTL[F ] can conveniently prioritize different scenarios, as well as embody
vacuity considerations in the formula. J

For an LTL[F ] formula ϕ, let V (ϕ) = {[[π, ϕ]] : π ∈ (2AP )ω}. That is, V (ϕ) is the set of
possible satisfaction values of ϕ in arbitrary computations.

I Theorem 3. [1] Consider an LTL[F ] formula ϕ.
|V (ϕ)| ≤ 2|ϕ|.
For every predicate θ ⊆ [0, 1], there exists a DPW Aϕ,θ such that L(Aϕ,θ) = {π : [[π, ϕ]] ∈ θ}.
Furthermore, Aϕ,θ has at most 22O(|ϕ|)

states and its index is at most 2|ϕ|.

3 High-Quality Synthesis

Consider an I/O-transducer T and an LTL[F ] formula ϕ over I ∪O. Each computation of T may
have a different satisfaction value for ϕ. We can measure the quality of T taking three approaches:

Worst-case approach: The environment is assumed to be hostile and we care for the minimal
satisfaction value of some computation of T . Formally, [[T , ϕ]]w = min{[[T (w), ϕ]] : w ∈ (2I)ω}.
Note that no matter what the input sequence is, the specification ϕ is satisfied with value at least
[[T , ϕ]]w.
Almost-sure approach: The environment is assumed to be stochastic and we care for the maximal
satisfaction value that is generated with probability 1. Formally, given a distribution ν of (2I)ω , we
define [[T , ϕ]]νa = max{v : there is W with ν(W ) = 1 and [[T (w), ϕ]] ≥ v for every w ∈ W}.
Note that the specification ϕ is satisfied almost surely with value at least [[T , ϕ]]νa.
Stochastic approach: The environment is assumed to be stochastic and we care for the expected
satisfaction value of the computations of T , assuming some given distribution on the inputs
sequences. Formally, let XT ,ϕ : (2I)ω → R be a random variable that assigns each sequence
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w ∈ (2I)ω of input signals with [[T (w), ϕ]]. Then, given a distribution ν of (2I)ω, we define
[[T , ϕ]]νs = E[XT ,ϕ], when the sequences in (2I)ω are sampled according to ν.

The worst case approach has been studied in [1], where it is shown how to find [[T , ϕ]]w and how
to synthesize, given ϕ, a transducer with a maximal worst-case satisfaction value. In this paper, we
consider the stochastic approach. For simplicity, we consider environments with a uniform distribution
on the input signals. That is, ν is such that in each moment in time, each input signal holds with
probability 1

2 , thus the probability of each letter in 2I is 1
2|I| (see Remark 3). Since ν is fixed, we

omit it from the notation and use [[T , ϕ]]a and [[T , ϕ]]s.

I Remark. [On the choice of a uniform distribution] Recall that we consider a uniform distribu-
tion on the letters in 2I . In practice, the distribution on the truth assignments to the input signals may
be richer. In the general case, such a distribution can be given by an MDP.

Adjusting our setting and algorithms to handle such distributions involves only a small technical
elaboration, orthogonal to the technical challenges that exist already in the setting of a uniform
distribution. Accordingly, throughout the paper we assume a uniform distribution. In Section 7.2, we
describe how our setting and algorithms are extended to the general case. J

I Example 4. Consider a hard-drive writing protocol that needs to finalize a write operation through
some connection. The connection needs to be closed as soon as possible, to allow access to the drive.
However, data may still arrive in the first two cycles, and if the connection is closed in the first cycle,
then the data that arrives in the second cycle gets lost. The issue is that the decision as to whether to
close the connection is made during the first cycle, before the protocol knows whether data is going
to arrive in the second cycle. The specification that formulates the above scenario is over I = {data}
and O = {close} and is ϕ = ((Xdata)→ ¬close) ∧ ((¬Xdata)→ close) ∨ O 1

2
Xclose).

That is, if data arrives in the second cycle, then we should not close the connection in the first
cycle. In addition, if data does not arrive in the second cycle, we should close the connection in the
first cycle – this would give us satisfaction value 1 in the second conjunct, but we may also close
the connection only in the second cycle, which would guarantee a satisfaction value of 1 in the first
conjunct, but would reduce the satisfaction value of the second conjunct to 1

2 in cases data does not
arrive in the second cycle.

Let p ∈ [0, 1] be the probability that data arrives in the second cycle. Consider a transducer
T1 that closes the connection in the first cycle. With probability p, we have that Xdata holds, in
which case ϕ has satisfaction value 0. Also, with probability 1 − p, we have that Xdata does not
hold and the satisfaction value of ϕ is 1. Thus, the satisfaction value of ϕ is 0 in the worst case,
and this is also the highest satisfaction value that T1 achieves with probability 1. On the other hand,
the expected satisfaction value of ϕ in a computation of T1 is p · 0 + (1 − p) · 1 = 1 − p. Thus,
[[T1, ϕ]]w = [[T1, ϕ]]a = 0, whereas [[T1, ϕ]]s = 1− p.

Consider now a transducer T2 that closes the connection only on the second cycle. With probability
p, we have that Xdata holds, in which case the satisfaction value of ϕ is 1. Also, with probability
1− p, we have that Xdata does not hold, in which case the satisfaction value of ϕ is 1

2 . Thus, now
the satisfaction value of ϕ is 1

2 in the worst case, and this is also the highest satisfaction value that T2
achieves with probability 1. On the other hand, the expected satisfaction value of ϕ in a computation
of T2 is p ·1+(1−p) · 1

2 = 1
2 (1+p). Thus, [[T2, ϕ]]a = [[T2, ϕ]]w = 1

2 , whereas [[T2, ϕ]]s = 1
2 (1+p).

To conclude, when p ≥ 1
3 , in which case 1

2 (1 + p) ≥ 1− p, then T2 is superior to T1 in all the
three approaches. When, however, p < 1

3 , then a designer that cares for the expected satisfaction
value should prefer T1. J
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3.1 The Achievability MDP of an LTL[F ] formula

In this section we develop the technical tool we are going to use for solving the high-quality synthesis
problem in the stochastic approach.

Consider an LTL[F ] formula ϕ. Let V (ϕ) = {v1, ..., vn}, with v1 < ... < vn ∈ [0, 1].
By Theorem 3, we have that n ≤ 2|ϕ|. Also, for every 1 ≤ i ≤ n, there is a DPW Ai such
that L(Ai) = {w : [[w,ϕ]] = vi}. Let Ai = 〈2I∪O, Qi, qi0, δi, αi〉. We construct the product pre-
automaton A = A1 × . . . × An that subsumes the joint behavior of the DPWs. Formally, A =
〈2I∪O, S, s0, µ〉, where S = Q1 × . . .×Qn, the initial state is s0 = 〈q1

0 , ..., q
n
0 〉, and for every state

s = 〈q1, ..., qn〉 and σ ∈ 2I∪O, we have µ(s, σ) = 〈δ1(q1, σ), ..., δn(qn, σ)〉.
Every pre-automaton B = 〈2I∪O, Q, q0, δ〉 induces a pre-MDPMB = 〈Q, q0, 2O,P〉 in which

for every two states q, q′ ∈ S and action o ∈ 2O, we have P(q, o, q′) = |{i∈2I :δ(q,i∪o)=q′}|
2|I| . That

is, choosing action o ∈ 2O in state q, the MDP samples the possible inputs i ∈ 2I uniformly and
moves to state δ(q, i ∪ o). Consider a memoryless strategy f : Q → 2O forMB. The strategy f
induces an I/O-transducer T [MB, f ] = 〈I,O,Q, q0, δ

′, µ〉 in which for every state q ∈ Q, we have
µ(q) = f(q), and for all i ∈ 2I , we have δ′(q, i) = δ(i ∪ µ(q)). Thus, the transducer has the same
state space as B, it lets f fix the labels of the states, and uses this label to complete the 2I component
of the alphabet to a letter in 2I∪O.

Consider a parity acceptance condition α on the state space Q of B. Using the notations of [9], a
state q ∈ Q inMB is controllably win recurrent (c.w.r., for short) if there exists an end component
U ⊆ Q such that q ∈ U , α(q) = maxp∈U {α(p)}, and α(q) is even. That is, q has the maximal
rank in U , and this rank is even. The end component U is referred to as a witness for q being c.w.r.
Intuitively, a parity-MDP with a parity objective α has a strategy to win with probability 1 from all
c.w.r. states. Moreover, if U is a witness for some c.w.r. state, then there exists a strategy to win with
probability 1 from every state in U . If, however, a run ofMB reaches an end component that does
not have a c.w.r. state, then it is winning with probability 0.

Once we have defined the product pre-automatonA, we construct an MDPMA = 〈S, s0, 2O,P, γ〉,
with the following reward function. For a state s = 〈q1, ..., qn〉 ofMA, we say that a value vi ∈ V (ϕ)
is achievable from s if there exists a c.w.r. state inMAi with a witness Ui for which qi ∈ Ui. Then,
γ(s) = max{vi : vi is achievable from s}. Note that the way we have defined A guarantees that
every state that is a part of some end component has at least one value vi that is achievable from
s. For states that are not in end components, we define the reward to be 0. Intuitively, γ(s) is the
highest satisfaction value that can be guaranteed with probability 1 from s. We refer toMA as the
achievability MDP for ϕ.

This completes the construction ofMA. Note that every end component U consists of states with
the same value vU . Thus, every infinite run r ofM eventually gets trapped in some end component
U , implying that γ(r) = vU . Indeed, the rewards along the states in the finite prefix of r that leads to
U are averaged out. For an end-component U ofMA, let U |i be the projection of U on Qi. Note
that U |i is an end component in Ai.

4 Synthesis Against a Stochastic Environment

In the stochastic high-quality synthesis problem (SHQSyn, for short), we get as input an LTL[F ]
formula ϕ over sets I and O of input and output signals, and we seek an I/O-transducer that
maximizes the expected value of a computation (under a uniform distribution of the inputs). Formally,
we want to compute maxT {E[[[T , ϕ]]s]} and return the witness transducer.1

1 A-priori, it is not clear that the maximum is attained. As we prove, however, this is in fact the case.
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We solve the SHQSyn problem by reasoning on the achievable MDPMA. Consider a strategy
f forMA. Let T be the transducer induced from f , that is T = T [MA, f ]. Recall the random
variable XT ,ϕ : (2I)ω → R that maps w ∈ (2I)ω to [[T (w), ϕ]]. We define the random variables
YT ,ϕ : (2I)ω → R as follows. For every w ∈ (2I)ω, we let YT ,ϕ(w) be the mean-payoff of the
values along the run ofA on T (w). Formally, let r be the run ofA on T (w). Then, YT ,ϕ(w) = γ(r),
where γ is the reward function ofMA. By definition, we have that [[T , ϕ]]s = E[XT ,ϕ]. SinceMA
is obtained by assuming a uniform distribution on the inputs, we have that E[YT ,ϕ] = valMA(f).

I Theorem 5. Consider an LTL[F ] formula ϕ. LetMA be the achievability MDP for ϕ. For
every value v ∈ [0, 1], there exists a strategy f in MA such that valMA(f) ≥ v iff there exists
an I/O-transducer T such that [[T , ϕ]]s ≥ v. Moreover, we can find in time polynomial inMA a
memoryless strategy f such that [[T [MA, f ], ϕ]]s maximizes {E[[[T , ϕ]]s]}.

Proof. We start by proving that if there exists a transducer T such that [[T , ϕ]]s ≥ v, then there exists
a strategy f such that valMA(f) ≥ v. For this, we prove, in Appendix B.1, that E[XT ,ϕ] ≤ E[YT ,ϕ].
This is indeed sufficient, as we can then take f to be the strategy induced by T .

For the converse implication, consider a strategy f inMA such that valMA(f) ≥ v. By [14],
we can assume that f is memoryless. Let T = T [MA, f ] be the transducer induced by f . In
Appendix B.1, we show that there exists a transducer T ′ such that E[XT ′,ϕ] = E[YT ,ϕ], thus
concluding the claim. J

We now proceed to show how to solve the SHQSyn problem.

I Theorem 6. Solving the SHQSyn problem for LTL[F ] can be done in doubly-exponential time.
The corresponding decision problem is 2EXPTIME complete.

Proof. Consider an LTL[F ] formula ϕ. We want to find a transducer T that maximizes [[T , ϕ]]s.
LetMA be the achievability MDP for ϕ. By Theorem 5, we can find in time polynomial inMA a
memoryless strategy f such that [[T [MA, f ], ϕ]]s maximizes {E[[[T , ϕ]]s]}. Below we analyze the
size ofMA. Let |ϕ| = k. By Theorem 3, we have that n ≤ 2k and each Ai is of size at most 22O(k)

.
Thus, the size ofMA is at most (22O(k))2k = 22O(k)

, implying the doubly exponential upper bound.
A matching lower bound for the respective decision problem follows from the 2EXPTIME

hardness of standard LTL synthesis. Note that in our setting one considers satisfaction with probability
1. Still, since the hardness proof for LTL synthesis considers the interaction between a system and
its environment along a finite prefix of a computation (one that models the computation of a Turing
machine that halts), it applies also for the stochastic setting. J

5 Adding an Almost-Sure Threshold

In this section we combine the stochastic and the almost-sure approaches. The SHQSyn problem
with a threshold includes both an LTL[F ] formula ϕ and a threshold t ∈ [0, 1]. The goal then is to
maximize the expected satisfaction value of ϕ while guaranteeing that it is almost surely above t.
Formally, given ϕ and t, we seek a transducer T that maximizes

{[[T , ϕ]]s : [[T , ϕ]]a ≥ t}.

Note that there need not be a transducer T for which [[T , ϕ]]a ≥ t, in which case the set is empty and
we return no transducer. This is the multi-valued analogue of an unrealizable Boolean specification
(except that here the user may want to try to reduce t). Note also that this sub-problem, of deciding
whether the set is empty, amounts to solving the high-quality synthesis problem in the almost-sure
approach. Finally, if the set is not empty, then we have to show, as in Section 4, that its maximum is
indeed attained.
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I Example 7. Consider a server sending messages over a noisy channel. At each cycle, the server
sends a message and needs to decide whether to encode it so that error-correction can retrieve it in
case the channel is noisy, or take a risk and send the message with no encoding. Encoding a message
has some cost. We formulate the quality of each cycle by the specification ψ over I = {noise} and
O = {encode}, where ψ = (¬noise ∧ ¬encode) ∨ O 3

4
encode. Thus, each cycle has satisfaction

value 1 if a message that is not encoded is sent over a non-noisy channel, and satisfaction value 3
4 if a

message is encoded. Note that otherwise (that is, when a message that is not encoded is sent over
a noisy channel), the satisfaction value is 0. The factor 3

4 in the LTL[F ] specification reflects the
priorities of the designer as induced by the actual cost of encoding and of losing messages.

Recall that ψ specifies the quality of a single cycle. The quality of a full computation refers
to its different cycles, and a natural thing to do is to take the average over the cycles we want to
consider. Assume that a channel may be noisy only during the first four cycles. Then, the quality of a
computation is ϕ = (ψ ⊕ 1

2
Xψ)⊕ 1

2
(XXψ ⊕ 1

2
XXXψ).

Assume that the probability of a channel to be noisy in each of the first four cycles is p. Consider
a transducer T1 that does not encode any message. The expected satisfaction value of ψ in each of
the four cycles is then (1− p) · 1 + p · 0 = 1− p, hence [[T1, ϕ]]s = 1− p. On the other hand, the
satisfaction value of ψ in a noisy cycle is 0, hence [[T1, ϕ]]w = [[T1, ϕ]]a = 0. Thus, if one does not
care for a lower bound on the satisfaction value in the worst case, then by using T1 he gets an expected
satisfaction value of 1− p.

Suppose now that we want the satisfaction value to be above 1
3 in the worst case. This can be

achieved by a transducer T2 that encodes messages in two of the four cycles. Indeed, for the cycles in
which a message is encoded, we get satisfaction value 3

4 , which is averaged with 0, namely the worst-
case satisfaction value in the cycles in which a message is not encoded. Hence, [[T2, ϕ]]w = [[T2, ϕ]]a =
3
4 ⊕ 1

2
0 = 3

8 >
1
3 . The expected satisfaction value of T2 is then [[T2, ϕ]]s = 3

4 ⊕ 1
2

(1− p) = 7
8 −

p
2 .

Finally, if we want to ensure satisfaction value 3
4 in the worst case, then we can design a transducer

T3 that encodes all the messages in the first four cycles. Now, [[T3, ϕ]]w = [[T3, ϕ]]a = [[T3, ϕ]]s = 3
4 .

It follows that for a small p, adding a threshold on the satisfaction value in the worst case reduces
the expected satisfaction value. Indeed, when p < 1

4 , then 1 − p > 7
8 −

p
2 > 3

4 . When, however,
p ≥ 1

4 , then T3 is superior in the three approaches. J

In order to solve the SHQSyn problem with a threshold, we modify our solution from Section 3.1
as follows. We start by deciding whether there exists a transducer T such that [[T , ϕ]]a ≥ t. For
this, we construct, per Theorem 3, a DPW A≥t = 〈2I∪O, Q≥t, q≥t0 , δ≥t, α≥t〉 such that L(A≥t) =
{w : [[w,ϕ]] ≥ t}. LetM≥t be the parity-MDP induced from A≥t. By [9], we can find the set of
almost-sure winning states ofM≥t. If q≥t0 is winning, then the required transducer exists, and in fact
M≥t embodies all candidate transducers. We obtain a pre-automaton A′≥t from A≥t by restricting
A≥t to winning states, and removing transitions from state q ∈ Q≥t for every action o ∈ 2O such
that there exists i ∈ 2I for which δ≥t(q, i ∪ o) is not a winning state.

We proceed by constructing a product pre-automaton A that is similar to the one constructed in
Section 3.1, except that takes t and A′≥t into account, as follows.

Let ` = arg mini {vi : vi ≥ t} be the minimal index such that vi ≥ t. We defineA = A`× . . .×
An ×A′≥t. That is, the product, defined as in Section 3.1, now contains only DPWs Ai for which
vi ≥ t and also contains A′≥t. We obtain the MDPMA and set the reward function as in Section 3.1,
taking into account only c.w.r. states from the automata A`, ...,An. The component A′≥t is only used
to restrict the actions of the MDPMA. We refer toMA as the t-achievability MDP for ϕ.

We present an analogue to Theorem 5. The proof appears in Appendix B.2.

I Theorem 8. Consider an LTL[F ] formula ϕ and a threshold t ∈ [0, 1]. Let MA be the t-
achievability MDP for ϕ. For every value v ∈ [0, 1], there exists a strategy f in MA such that

© Shaull Almagor and Orna Kupferman;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


valMA(f) ≥ v iff there exists an I/O-transducer T such that [[T , ϕ]]a ≥ t and [[T , ϕ]]s ≥ v.
Moreover, we can find in time polynomial inMA a memoryless strategy f such that [[T [MA, f ], ϕ]]s
maximizes {E[[[T , ϕ]]s] : [[T , ϕ]]a ≥ t}.

Since, by Theorem 3, the size ofA≥t is doubly exponential in ϕ, then, by following considerations
similar to these specified in the proof of Theorem 6, we conclude with the following.

I Theorem 9. Solving the SHQSyn problem with a threshold for LTL[F ] can be done in doubly-
exponential time. The corresponding decision problem is 2EXPTIME-complete.

I Remark. In [10, 12], the authors solve the problem of deciding, given an MDP M and two
thresholds v and t, whether there is a strategy f forM that guarantees value t almost surely, and has
expected cost at least v. The solution can be directly applied to our setting. However, note that this
solution only guarantees an expected cost of v, whereas our approach finds the optimal expected cost.

I Remark. In the SHQSyn problem with a threshold, we use the formula ϕ both for the expectation
maximization, and for the almost-sure threshold. Sometimes, it is desirable to decompose the
specification into one part – ψ, which is a hard constraints and needs to be satisfied almost-surely
above the threshold t, and another part – ϕ, which specifies a utility function with respect to which
we would like to optimize [5, 12].

Our solution can be easily adapted to handle this setting. Indeed, in the construction of the
t-achievability MDP, we replace A≥t, with B≥t, where L(B≥t) = {w : [[w,ψ]] ≥ t}, and proceed
with the described construction and the proofs.

6 Adding Environment Assumptions

A common paradigm in Boolean synthesis is synthesis with environment assumptions [7, 18], where
the input to the synthesis problem consists of a specification ϕ and an assumption ψ, and we seek a
transducer that realizes ϕ under the assumption that the environment satisfies ψ. In this section we
consider an analogue variant of the SHQSyn problem, where we are given an LTL[F ] specification
ϕ and an LTL assumption ψ, and we seek a transducer that maximizes the expected satisfaction
value of ϕ given that the environment satisfies the assumption ψ. Note that while the specification is
quantitative, the assumption is Boolean.

I Example 10. Recall the message-sending server in Example 7, and assume that the channel
can change its status (noisy/non-noisy) only every second cycle. We use this assumption in order to
design improved transducers. Formally, the assumption is given by the LTL formula ψ = (noise ↔
Xnoise) ∧ XX(noise ↔ Xnoise).

The transducer T4 does not encode the first message, but checks whether the channel was noisy. If
it was, the second message is encoded. We get that the expected satisfaction value of ϕ in T4 under the
assumption is (1−p+p · 3

4 +(1−p) ·1)/2 = 1− 5
8p, which is higher than 1−p = [[T1, ϕ]]s for every

p > 0. In addition, under the assumption we are guaranteed that the worst-case satisfaction value
of T4 is at least 3

8 , unlike T1 (in case the channel is noisy, so only the second and fourth messages
are encoded). Thus T4 is superior to T1 described in Example 7 in the three approaches (under the
assumption).

Next, as in Example 7, if we want to ensure satisfaction value 3
4 in the worst case, we can design

a transducer T5 that works like T4, except that it always encodes the first and third messages. The
expected satisfaction value of T5 under the assumption is ( 3

4 + p · 3
4 + (1− p) · 1)/2 = 7

8 −
p
8 , which

is higher than 3
4 = [[T3, ϕ]]s, for every p ∈ [0, 1].

Thus, under the assumption, it is possible to design transducers that increase the expected
satisfaction value as well as the lower bound. J
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Formally, in the SHQSyn problem with environment assumptions, we get as input an LTL[F ]
formula ϕ over I ∪O, and an environment assumption ψ, which is an LTL formula over I such that
Pr(ψ) > 0. That is, the probability of the event {w : w |= ψ} ⊆ (2I)ω is strictly positive. Recall that
XT ,ϕ is a random variable such that XT ,ϕ(w) = [[T (w), ϕ]]. We seek a transducer T that maximizes
E[XT ,ϕ|w |= ψ].

We start by citing a folklore lemma, whose proof can be found in Appendix B.3.

I Lemma 11. Consider a random variable X . Let A,B be events such that Pr(A) > 0 and
Pr(B) = 0. Then, E[X|A ∪B] = E[X|A].

Before proceeding, we note that if Pr(ψ) = 1, then we can proceed by dropping the assumption
entirely. Indeed, it holds that Pr(¬ψ) = 0, and by Lemma 11, we have that E[XT ,ϕ|w |= ψ] =
E[XT ,ϕ|(w |= ψ) ∪ (w |= ¬ψ)] = E[XT ,ϕ|(2I)ω] = E[XT ,ϕ]. Thus, we henceforth assume that
0 < Pr(ψ) < 1.

As mentioned in Section 1, maximizing the conditional expectation directly is notoriously prob-
lematic, as, unlike unconditional expectation, it is not a linear objective. Thus, it is not susceptible
to linear optimization techniques, which are the standard approach to find maximizing strategies in
MDPs. Our solution is a modification of the construction from Section 3.1 in which we, intuitively,
“redistribute” the probability of the input sequences that do not satisfy the assumption. We start by
constructing a DPW Aψ that accepts a word w ∈ (2I)ω iff w |= ψ. Note that the alphabet of A is 2I .
We think of this alphabet as 2I∪O, where transitions simply ignore the 2O component. In particular,
the MDP MAψ is in fact an MC. We say that an ergodic component of MAψ is rejecting if the
maximal rank that appears in it is odd. It is easy to see that a run in a rejecting ergodic component is
accepting w.p. 0.

We then consider the automaton A = Aψ × A1 × . . . × An, and obtain the MDP MA =
〈S, s0, 2O,P, γ〉 as described in Section 3.1. In particular, the reward function is as there, and the
only change is the addition of the Aψ component, which provides information about satisfaction of ψ.
We refer toMA as the conditional achievability MDP for ϕ given ψ. Recall that for a strategy f , we
have defined RMA,f as a random variable whose value is the reward on runs inMA with strategy f .
Following the proof of Theorem 5, we then get the following.

I Theorem 12. Consider an LTL[F ] formula ϕ and an environment assumption ψ. Let MA
be the conditional achievability MDP for ϕ given ψ. For every value v ∈ [0, 1], there exists a
strategy f inMA such that E[RMA,f |w |= ψ] ≥ v iff there exists an I/O-transducer T such that
E[XT ,ϕ|w |= ψ] ≥ v. Moreover, if f is memoryless, then we can find in time polynomial inMA a
memoryless strategy f such that E[XT [MA,f ],ϕ|w |= ψ] ≥ v.

Theorem 12 enables us to reason about MA, but we are still left with conditional expectations.
To handle the latter, we follow a technique suggested in [2] and obtain from MA a new MDP
M′A = 〈S, s0, A,P′, γ〉 as follows. A state s = 〈q, q1, ..., qn〉 of MA is called a rejecting er-
godic state if its state q of Aψ belongs to a rejecting ergodic component ofMAψ . Let R = {s :
s is a rejecting ergodic state}.

For every state s ∈ R we set P′(s, a, s0) = 1. That is, whenever a rejecting ergodic component
of Aψ is reached, the MDPM′A deterministically resets back to s0.

Intuitively, when a rejecting ergodic component of Aψ is reached, then the probability of ψ being
satisfied is 0. Thus, resetting “redistributes” the probability of ψ not being satisfied evenly. Below we
formalize this intuition. The proofs can be found in Appendices B.4 and B.5.

I Lemma 13. Let v ∈ R, and consider a memoryless strategy g inM′A such that valM′
A

(g) ≥ v.
There exists a memoryless strategy f inMA such that E[RMA,f |w |= ψ] ≥ v. Moreover, f can be
computed from g in polynomial time.
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I Lemma 14. Let v ∈ R, and consider a strategy f inMA such that E[RMA,f |w |= ψ] ≥ v.
There exists a strategy g inM′A such that E[RM′

A,g
] ≥ v.

Finally, using Theorem 12, and the fact that Aψ is doubly exponential in ψ, we can use the same
reasoning as in the proof of Theorem 6 and conclude with the following. The proof can be found in
Appendix B.6.

I Theorem 15. Solving the SHQSyn problem with environment assumptions can be done in doubly-
exponential time. The corresponding decision problem is 2EXPTIME-complete.

7 Extensions

In this section we describe two extensions to the setting. The first combines the threshold and
assumption extensions presented in Sections 5 and 6. The second shows how to handle a non-uniform
probability distribution.

7.1 Combining an Almost-Sure Threshold with Environment Assumptions

Combining an almost-sure threshold with environment assumptions requires some subtlety in the
definitions. As an input for the problem, we are given an LTL[F ] formula ϕ over I ∪ O, an LTL
environment assumption ψ over I such that Pr(ψ) > 0, and a threshold t ∈ [0, 1]. Then, we seek a
a transducer T that maximizes E[XT ,ϕ|w |= ψ] and for which Pr([[T (w), ϕ]] ≥ t|w |= ψ) = 1. In
particular, the threshold t should be attained almost surely only in computations that satisfy ψ.

I Remark. Note that it could have also been possible to seek a transducer T that maximizes
E[XT ,ϕ|w |= ψ] and for which Pr([[T (w), ϕ]] ≥ t) = 1, namely for which the threshold should hold
almost surely regardless of the assumption. We found this approach less appealing. Its solution,
however, is a straightforward combination of our constructions. That is, we start with the product
A` × . . .×An ×A′≥t ×Aψ , as defined in Sections 5 and 6, apply the reset modification described
in Section 6, and seek a maximizing strategy in the resulting MDP. J

We solve the problem as follows. We start by checking whether there exists a transducer T such that
Pr([[T (w), ϕ]] ≥ v|w |= ψ) = 1, using the following lemma (see Appendix B.7 for the proof).

I Lemma 16. Let ϕ,ψ, and t be as above. For every transducer T it holds that Pr([[T (w), ϕ]] ≥
t|w |= ψ) = 1 iff Pr([[T (w), ψ → ϕ]] ≥ t) = 1.

Using Lemma 16, we can decide the existence of a transducer T as we seek, by constructing the
DPW Aψ→ϕ,≥t as per Theorem 3, and keeping only almost-sure winning states as done in Section 5.

We now proceed as in the first approach, by constructing the productA`× . . .×An×A′ψ→ϕ,≥t×
Aψ , where A′ψ→ϕ,≥t is obtained from Aψ→ϕ,≥t by keeping only almost-sure winning states.

7.2 Handling a Non-Uniform Distribution

In order to handle a non-uniform distribution on the input signals, we first have to decide how to
model arbitrary distributions on (2I)ω . The common way to do so is to assume that the distribution is
generated by a pre-MDP D = 〈S, s0, 2O,P〉 and a labeling function ι : S → 2I , where a state s ∈ S
generates the input ι(s). Thus, the probability of an input signal to hold depends on the history of
the interaction with the system. Formally, every run r = s0, s1, ... of D generates an input sequence
ι(s1), ι(s2), and the distribution on runs induces a distribution on (2I)ω . 2

2 Note that we do not consider the label on s0, in order to allow a distribution on the initial letters.
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All our results can be adapted to handle a distribution given by D as above. We only have
to change the construction of the achievability MDP described in Section 3.1 as follows. For a
pre-automaton B = 〈2I∪O, Q, q0, δ〉 and a distribution pre-MDP D = 〈S, s0, 2O,P〉 with labeling
function ι, we define the induced pre-MDP as MDB = 〈Q × S, 〈q0, s0〉, 2O,P′〉 where for every
two states 〈q, s〉, 〈q′, s′〉 ∈ Q × S and action o ∈ 2O, we have P′(〈q, s〉, o, 〈q′, s′〉) = P(s, o, s′)
if δ(q, ι(s′) ∪ o) = q′, and 0 otherwise. It is not hard to see that all the constructions we apply to
achievability MDPMA can be applied toMDA, which would take the distribution in D into account.
The complexity of the algorithms is polynomial inMDA. Thus, the complexity of our algorithms
remains 2EXPTIME-complete in ϕ and polynomial in D.
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A Analysis of Example 1

We consider a transducer that replaces the battery in the first station it encounters starting from
position t, for 1 ≤ t ≤ k. The expected cost of the transducer is then

(1− p)k + p
t

k
+ (1− p)pt+ 1

k
+ ...+ (1− p)k−tpt+ (k − t)

k

= (1− p)k +
k−t∑
i=0

(1− p)ipt+ i

k

= (1− p)k +
k−t∑
i=0

(1− p)ip t
k

+
k−t∑
i=0

(1− p)ip i
k

= (1− p)k + p
t

k

k−t∑
i=0

(1− p)i + p

k

k−t∑
i=0

(1− p)ii

= (1− p)k + p
t

k

(
1− (1− p)k−t+1

p

)
+ p(1− p)

k

k−t∑
i=0

(1− p)i−1i

= (1− p)k + t

k
(1− (1− p)k−t+1) + p(1− p)

k

(
−
k−t∑
i=0

(1− p)i
)′

= (1− p)k + t

k
(1− (1− p)k−t+1) + p(p− 1)

k

(
1− (1− p)k−t+1

p

)′

= (1− p)k + t

k
(1− (1− p)k−t+1)+

+p(p− 1)
k

(
(k − t+ 1)(1− p)k−tp− 1 + (1− p)k−t+1

p2

)
= (1− p)k + t

k
(1− (1− p)k−t+1)+

+(p− 1)
kp

(
(k − t+ 1)(1− p)k−tp− 1 + (1− p)k−t+1)

One now sees, for example, that if t = αk for α ∈ (0, 1), then the latter expression tends to αk
k = α

as k →∞, as the first and third summands tend to 0. In particular, for α = 1
2 , we get an expected

satisfaction value of 1
2 . J

B Proofs

B.1 Full Proof of Theorem 5

We start by proving that if there exists a transducer T such that [[T , ϕ]]s ≥ v, then there exists a
strategy f such that valMA(f) ≥ v. To this end, it suffices to prove that E[XT ,ϕ] ≤ E[YT ,ϕ]. Indeed,
we can then take f to be the strategy induced by T .

Consider a random word w ∈ (2I)ω. it is well-known that for every transducer T , w.p. 1 the
run of T on w reaches an end component and visits all the states of that end component infinitely
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often (see e.g. [9]). Let U be the end component that the run r ofMA on T (w) reaches and for
which inf(r) = U . Let 1 ≤ i ≤ n be such that vi = [[T (w), ϕ]] = XT ,ϕ(w). Then, Ai accepts
T (w), and the component U |i contains a c.w.r. state qi. Indeed, since inf(r) = U , then the run of Ai
on w visits infinitely often all the states in U |i, implying that the maximal rank in U |i is even, and
that every state that attains this rank in U |i is a c.w.r. state inMAi . Thus, by construction, all the
states in U have reward at least vi (it may be the case that U is contained in another end component
with a higher-value c.w.r.). Thus, YT ,ϕ(w) ≥ vi. Since our assumption on T (w) reaching an end
component holds w.p. 1, it follows that Pr(XT ,ϕ ≤ YT ,ϕ) = 1. By taking expectation, we conclude
that E[XT ,ϕ] ≤ valMA(T ) = E[YT ,ϕ].

For the converse implication, consider a strategy f inMA such that valMA(f) ≥ v. By [14], we
can assume that f is memoryless. Let T = T [MA, f ] be the transducer induced by f . We show that
there exists a transducer T ′ such that E[XT ′,ϕ] = E[YT ,ϕ], thus concluding the claim.

By [9], if q is a c.w.r. state in an MDPM, and U is a witness for q, then there exists a memoryless
strategy g such that for every state q′ ∈ U , w.p. 1 the run r ofM from q′ visits q infinitely often and
stays forever in U .

We obtain T ′ as follows. Once the run ofMA with T reaches an end component U , if the states
in U have value vi for some 1 ≤ i ≤ n, then T starts playing the memoryless strategy mentioned
above to visit a state s = 〈q1, ..., qn〉 ∈ U such that qi is a c.w.r. inMAi . Such a state must exist by
the construction ofM.

Note that the runs of T and T ′ only differ after reaching an end component, in which case while
the runs may differ, the values do not differ, as all the states in an end component have the same value.
Thus, E[YT ,ϕ] = E[YT ′,ϕ].

Observe now that once T ′ reaches an end component U as above, then w.p. 1 the run visits qi
infinitely often, and is therefore accepting inAi, implying that [[T (w), ϕ]] ≥ vi. By the construction of
MA, we have that vi is the maximal value for which there exists a c.w.r. state in (a projection to theAi
automata on) U . Thus, Pr(YT ′,ϕ = XT ′,ϕ) = 1. We conclude that E[YT ,ϕ] = E[YT ′,ϕ] = E[XT ′,ϕ],
and we are done.

Finally, it is easy to see that finding the c.w.r states and constructing T ′ from f can be done in
polynomial time. The first involves finding the winner in parity-MDPs, and the second follows from
the fact that finding the strategies g above can be done in polynomial time [9]. Then, T ′ = T [MA, f ′],
where f ′ is the strategy that plays f until reaching an end component, and then plays g, as described
above.

B.2 Proof of Theorem 8

For the first direction, namely constructing f given T , the proof is analogous to that of Theorem 5,
keeping in mind that [[T , ϕ]]a ≥ t implies that w.p. 1 a run ofMA with the strategy T reaches an end
component that contains a c.w.r. state. Indeed, the assumption implies that w.p. 1 the component A′≥t
accepts T (w), which means that w.p. 1 at least one of the automata A`, ...,An accepts T (w), so the
end component that is eventually reached (also w.p. 1) has a c.w.r. state. The rest of the analysis
follows the proof of Theorem 5.

For the other direction, consider a memoryless strategy f inMA. Assume that there exists ε > 0
such that the run ofMA with f reaches an end component U that does not have a c.w.r. state w.p.
ε > 0. By the construction ofMA, all the states in U have reward 0. Thus, changing the behavior of
T from the states in U cannot decrease the expected value. Furthermore, by the construction of A′,
the projection of U on A′≥t consists only of states from which there is a strategy that wins w.p. 1 in
the parity-MDPM≥t. Thus, we can modify f to play such a strategy from U while not decreasing
the expected value, but guaranteeing that f reaches w.p. 1 an end component that contains a c.w.r.
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state. From here, we obtain T ′ similarly to the proof of Theorem 5. As there, the strategy can be
memoryless and be found in polynomial time. J

B.3 Proof of Lemma 11

Recall that the probabilistic distribution function of X given an event C with Pr(C) > 0 is a function
fX|C that satisfies for all D ⊆ R ∫

D

fX|C(x)dx = Pr(D|C).

It is easy to show that since Pr(B) = 0, then for every event D it holds that Pr(D|A ∪ B) =
Pr(D|A). Thus, the former condition implies that fX|A∪B ≡ fX|A, and finally

E[X|A ∪B] =
∫
R
xfX|A∪B =

∫
R
xfX|A = E[X|A].

J

B.4 Proof of Lemma 13

We construct f to agree with g on every state not in R. On states in R, we set f to behave arbitrarily.
We claim that E[RMA,f |w |= ψ] = valM′

A
(g).

Let B ⊆ (2I)ω be the event such that w ∈ B iff the run of Aψ on w reaches a rejecting
ergodic component. Equivalently, this is set of words for which a run ofMA reaches R. Recall
that valM′

A
(g) = E[RM′

A,g
]. By the law of total expectation we get E[RM′

A,g
] = E[RM′

A,g
|B] ·

Pr(B) + E[RM′
A,g
|B] · Pr(B). Since g is memoryless, and since visiting B inM′A implies a reset

to s0, we get that E[RM′
A,g
|B] = E[RM′

A,g
]. Thus, the above becomes E[RM′

A,g
] = E[RM′

A,g
] ·

Pr(B) + E[RM′
A,g
|B] · (1− Pr(B)). Rearranging and dividing by (1− Pr(B)), which is nonzero

since we assume Pr(ψ) < 1, we get that E[RM′
A,g

] = E[RM′
A,g
|B].

Next, we observe that given B, the behavior of f and g is identical, since the reset states are never
reached. Thus, we get E[RM′

A,g
] = E[RM′

A,g
|B] = E[RMA,f |B].

We now partition the event {w : w |= ψ} to ({w : w |= ψ} ∩ B) ∪ ({w : w |= ψ} ∩ B).
Observe that, by definition, Pr({w : w |= ψ} ∩ B) = 0. Therefore, by Lemma 11, we get that
E[RMA,f |w |= ψ] = E[RMA,f |w |= ψ ∩ B]. Similarly, we partition the event B to B =
({w : w |= ψ} ∩ B) ∪ ({w : w 6|= ψ} ∩ B). Observe that Pr({w : w 6|= ψ} ∩ B) = 0. Indeed,
given that a computation does not reach R, it reaches w.p. 1 an ergodic state from which ψ is satisfied
w.p. 1, and therefore the computation satisfies ψ w.p. 1. Again, using Lemma 11 and the above
observation, we get E[RMA,f |B] = E[RMA,f |w |= ψ ∩ B] = E[RMA,f |w |= ψ], implying that
E[RM′

A,g
] = E[RMA,f |B] = E[RMA,f |w |= ψ]. J

B.5 Proof of Lemma 14

We construct g to behave as follows. As long as R is not reached, g behaves as f . By the definition
ofM′A, once a state in R is reached, the next step resets to s0. We then let g “start over” and again
behave as f does on an empty history. We claim that E[RM′

A,g
] = E[RMA,f |w |= ψ]. The proof is

similar to that of Lemma 13.
Consider the eventB as in the proof of Lemma 13. Note that since g resets whenever R is reached,

we have that E[RM′
A,g

] = E[RM′
A,g
|B]. Since E[RM′

A,g
] = E[RM′

A,g
|B] ·Pr(B) +E[RM′

A,g
|B] ·

Pr(B), we rearrange and get E[RM′
A,g

] = E[RM′
A,g
|B]. Again, as in the proof of Lemma 13, we

have that E[RMA,f |w |= ψ] = E[RMA,f |B]. Finally, since f and g coincide given B, we conclude
that E[RM′

A,g
] = E[RM′

A,g
|B] = E[RMA,f |B] = E[RMA,f |w |= ψ] and we are done. J
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B.6 Proof of Theorem 15

Consider an LTL[F ] specification ϕ over I ∪O and an LTL assumption ψ over I . By Theorem 12,
it is enough to find a memoryless strategy f inMA that maximizes E[RMA,f |w |= ψ]. Consider a
memoryless strategy g that maximizes valM′

A
(g). By Lemma 13, we can compute in polynomial

time inM′A a memoryless strategy f such that E[RMA,f |w |= ψ] ≥ valM′
A

(g). By Lemma 14,
the strategy f maximizes E[RMA,f |w |= ψ], as otherwise g does not attain the maximal value in
M′A. Thus, it is enough to find a maximizing memoryless strategy inM′A, which can be done in
doubly-exponential time.

The lower bound trivially follows from Theorem 5.
J

B.7 Proof of Lemma 16

By the law of total probability, we can write

Pr([[T (w), ψ → ϕ]] ≥ t) =
= Pr([[T (w), ψ → ϕ]] ≥ t|w |= ψ) · Pr(w |= ψ)+
+ Pr([[T (w), ψ → ϕ]] ≥ t|w |= ¬ψ) · (1− Pr(w |= ψ))

Given that ψ holds, we have that [[T (w), ψ → ϕ]] = [[T (w), ϕ]]. Therefore, Pr([[T (w), ψ → ϕ]] ≥
t|w |= ψ) = Pr([[T (w), ϕ]] ≥ t).

Given that ψ does not hold, we have that [[T (w), ψ → ϕ]] = 1. Therefore, Pr([[T (w), ψ → ϕ]] ≥
t|w |= ¬ψ) = 1.

Accordingly, Pr([[T (w), ψ → ϕ]] ≥ t) = 1 iff Pr([[T (w), ϕ]] ≥ t)·Pr(w |= ψ)+1·(1−Pr(w |=
ψ)) = 1. Assuming 0 < Pr(ψ) < 1, the latter is equivalent to Pr([[T (w), ϕ]] ≥ t) = 1, and we are
done. J
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