
Max and Sum Semantics

for Alternating Weighted Automata

Shaull Almagor and Orna Kupferman

Hebrew University, School of Engineering and Computer Science, Jerusalem, Israel.

Abstract. In the traditional Boolean setting of formal verification, al-
ternating automata are the key to many algorithms and tools. In this set-
ting, the correspondence between disjunctions/conjunctions in the speci-
fication and nondeterministic/universal transitions in the automaton for
the specification is straightforward. A recent exciting research direction
aims at adding a quality measure to the satisfaction of specifications
of reactive systems. The corresponding automata-theoretic framework is
based on weighted automata, which map input words to numerical val-
ues. In the weighted setting, nondeterminism has a minimum semantics
– the weight that an automaton assigns to a word is the cost of the
cheapest run on it. For universal branches, researchers have studied a
(dual) maximum semantics. We argue that a summation semantics is of
interest too, as it captures the intuition that one has to pay for the cost
of all conjuncts.
We introduce and study alternating weighted automata on finite words
in both the max and sum semantics. We study the duality between the
min and max semantics, closure under max and sum, the added power
of universality and alternation, and arithmetic operations on automata.
In particular, we show that universal weighted automata in the sum
semantics can represent all polynomials.

1 Introduction

Formal verification is the study of algorithms and tools for the development
of correct hardware and software systems. Traditional formal verification is
Boolean: the system may either satisfy its specification or not satisfy it. A recent
exciting research direction aims at adding a quality measure to the satisfaction
of specifications of reactive systems, and using it in order to formally define and
reason about quality of systems and in order to improve the quality of automat-
ically synthesized systems.

The automata-theoretic approach uses the theory of automata as a unifying
paradigm for system specification, verification, and synthesis [17, 19]. By viewing
computations as words (over the alphabet of possible assignments to variables
of the system), we can view both the system and its specification as languages,
and reduce problems like model checking, satisfiability, and synthesis, to ques-
tions about automata. The automata-theoretic approach has proven to be very
versatile and fruitful.

Traditional automata accept or reject their input, and are therefore Boolean.
A weighted automaton maps each word to a value from some semiring [13]. We

focus on the tropical semiring. There, each transition of the automaton has a
cost in R, and the value of a run is the sum of the costs of the transitions
taken along the run. A nondeterministic automaton A may have several runs on
a word, and the weight of a word w in A is the value of the cheapest run on
it. Applications of weighted automata over the tropical semiring include formal
verification, where WFAs are used for the verification of quantitative properties
[3, 4, 6, 9, 15] for reasoning about probabilistic systems [2], and for reasoning
about the competitive ratio of on-line algorithms [1], as well as text, speech, and
image processing, where the costs of the automaton are used in order to account
for the variability of the data and to rank alternative hypotheses [5, 14].

The rich structure of weighted automata makes them intriguing mathe-
matical objects. Fundamental problems that have been solved decades ago for
Boolean automata are still open or known to be undecidable in the weighted
setting. This includes the problem of deciding whether a given nondeterministic
weighted automaton can be determinized, and the problem of deciding whether
the language of one automaton is contained (in the weighted sense) in the lan-
guage of another automaton [8].

In the Boolean setting, the model of alternating automata has proven to be
especially useful in the context of formal verification. While in a nondeterminis-
tic automaton the transition function specifies only existential requirements on
the run, in an alternating automaton it specifies both existential and univer-
sal requirements. The universal requirements correspond to conjunctions in the
specifications, making the translation of temporal-logic formulas to alternating
automata simple and linear [7, 18], as opposed to the exponential translation to
nondeterministic automata [19]. The linear translation of temporal logic to alter-
nating automata is essential in automata-based algorithms for model checking
of branching temporal logic formulas [12], and is useful for further minimization
of the automata [16], for handling of incomplete information [11], for algorithms
that avoid determinization [10], and more.

In the Boolean setting, the semantics of both disjunctions and conjunctions
is straightforward. Recall that in a nondeterministic weighted automaton, the
weight of a word is the value of the cheapest run on it. This meets our intu-
ition of a “minimum semantics” for disjunctions in the weighted setting. It is
less clear what the semantics of conjunctions should be. If we want to maintain
the traditional helpful dualization between disjunctions and conjunctions, then
an appropriate semantics for conjunction is a maximum semantics. The maxi-
mum semantics is also suitable for an analysis in which the weights correspond
to a confidence or a truth-level indication. However, if the analysis is used in
order to study the cost of the satisfaction, then an appropriate semantics is a
summation semantics, in which the cost of satisfying a conjunction ϕ1 ∧ ϕ2 is
not the maximal cost of satisfying ϕ1 or ϕ2, but rather the sum of these costs.
Note that for the motivation of quantitative specifications, where one wants to
replace Boolean satisfaction by a quantitative value that describes the quality of
the satisfaction, both the maximum and the summation semantics are of inter-

2

est. The two possible semantics for conjunctions in the weighted setting induce
two different semantics for universal branches in alternating weighted automata.

We study alternating weighted automata on finite words, in both the maxi-
mum and summation semantics. We refer to the automata by max-AWAs and
sum-AWAs, respectively. We start with the max semantics. We study the expres-
sive power of max-AWAs, their closure properties with respect to the operators
min, max, and negation of weighted languages, the power of alternation with
respect to nondeterminism, and arithmetics with max-AWAs. We also formalize
the duality between the min semantics of existential transitions and the max
semantics of universal transitions by means of a negation operator on weighted
languages. Alternating automata with the max semantics are studied in [4]. The
automata there are on infinite words.1 The fact we work with finite words, where
the value of a sequence of costs follows the tropical semiring, enables us to get
a clear picture on the effect of adding alternation on top of nondeterminism.
Indeed, in the case of infinite words, several max semantics are possible for an
infinite sequence of costs (c.f., limit average, discounted sum, and more). This
makes the setting more involved and yields a less uniform picture [4]. Never-
theless, the picture we obtain, and in particular the fact alternation cannot be
removed, are similar to the general picture obtained for the different variants of
the max semantics in the setting of infinite words.

We continue and study the sum semantics. A key difference between max-AWAs
and sum-AWAs is the fact that in the sum semantics the weight of a word may
be exponentially larger than its length (even when all costs in the automaton
are bounded by a constant). One immediate implication of this is that alter-
nation cannot be removed in sum-AWA. We also study closure properties for
sum-AWA, and the added expressive power of alternation even in languages in
which the weight of a word does not go beyond its length.

An interesting feature of sum-AWA is their ability to represent polynomials.
We say an automaton A over a singleton alphabet {a} represents a function
f : N \ {0} → R, if for all n ∈ N \ {0}, we have that LA(an) = f(n). We show
that sum-AWA (in fact, we even do not need nondeterminism) can represent all
polynomials. Moreover, when the coefficients of the polynomial are non-negative,
we can construct A so that it has only non-negative costs. It is interesting to
compare these results with the fact that regular automata on finite words cannot
recognize polynomials (for example, the language of all words of the form an2

is
not regular).

Due to the lack of space, some proofs are omitted and can be found in the
full version, in the authors’ home pages.

1 More work on weighted automata on infinite words, all in the nondeterministic set-
ting, include different semantics of the value of a run (for example, in B-automata
[9], the value depends on counters whose values are manipulated during the run),
and the relation to quantitative variants of LTL or MSO [6].

3

2 Alternating Weighted Automata

For a finite alphabet Σ, a word w = σ1 · σ2 · · ·σn is a finite sequence of letters
from Σ. We use Σ∗ to denote the set of all finite words over the alphabet Σ. A
nondeterministic finite weighted automaton (NWA) is a tuple A = 〈Σ, Q, Q0, δ〉,
where Σ is a finite non-empty alphabet, Q is a finite non-empty set of states,
Q0 ⊆ Q is a non-empty set of initial states , and δ : Q×Σ → 2Q×R is a weighted
transition function. Intuitively, when the automaton is in state q and it reads
the letter σ, it moves to state q′ at cost c, for some 〈q′, c〉 ∈ δ(q, σ).

A run r of A on a finite word w = σ1 · · ·σn ∈ Σ∗ is a sequence r =
(q0, c0), (q1, c1), . . ., (qn, cn) of n + 1 pairs in Q ×R such that q0 ∈ Q0, c0 = 0,
and for all 0 ≤ i < n, we have (qi+1, ci+1) ∈ δ(qi, σi+1). We associate the
run r with the two sequences S(r) = q0, ..., qn and C(r) = c0, ..., cn. We define
val(r) = c0 + c1 + ... + cn to be the value of the run r. Thus, the costs of the
transitions taken along the run are accumulated, and induce the value of the
run.2

A weighted automaton A assigns weights to words in Σ∗. The weight of
w ∈ Σ∗, denoted LA(w), is the value of the cheapest run of A on w. Formally,
LA(w) = min{val(r) : r is a run of A on w}. If there are no runs of A on w,
then LA(w) is undefined. The function LA is called the (weighted) language of
A, and we say that A recognizes LA. We use dom(LA) to denote the domain of
LA.

In an alternating automaton, the transition function may specify not only
existential choices, but also universal ones. Below we define alternating weighted
automata formally. For a given set X , let B+(X) be the set of positive Boolean
formulas over X (i.e., Boolean formulas built from elements in X using ∧ and
∨), where we also allow the formulas true and false. For Y ⊆ X , we say that Y

satisfies a formula θ ∈ B+(X) iff the truth assignment that assigns true to the
members of Y and assigns false to the members of X \ Y satisfies θ. The set Y

minimally satisfies θ if Y satisfies θ and no set that is contained in Y satisfies θ.
For example, the sets {x1, x3} and {x2, x3} both minimally satisfy the formula
(x1 ∨ x2) ∧ x3, while the set {x1, x2} does not satisfy this formula, and the set
{x1, x2, x3} satisfies it but not minimally.

A weighted alternating automaton (AWA, for short) is a tuple A = 〈Σ, Q, q0, δ〉,
where Σ and Q are as in nondeterministic automata, q0 ∈ Q is an initial state3

and δ : Q×Σ → B+(Q×R) is a weighted transition function. In order to define
runs of alternating automata, we first have to define trees and weighted labeled

2 Other common models for weighted automata include initial and final costs on states,
transitions with an infinite cost, and accepting/non-accepting states. Our model
here is simpler, yet our results can be easily extended to other models. Also, in
general, an NWA may be defined with respect to any semiring 〈IK,⊕,⊗, 0, 1〉. The
value of a run is then the semiring product of the costs along the run. The weight
of a word is the semiring sum over the costs of all accepting runs on it. In this
work, we focus on weighted automata defined with respect to the min-sum semiring,
〈R ∪ {∞}, min, +,∞, 0〉 (sometimes called the tropical semiring), as defined above.

3 We could have assumed an initial foruma in B+(Q) instead.

4

trees. A tree is a prefix closed set T ⊆ N∗ (i.e., if x · c ∈ T , where x ∈ N∗ and
c ∈ N, then also x ∈ T). The elements of T are called nodes. For every x ∈ T ,
the nodes x · c, with c ∈ N, are the successors of x. A node is a leaf if it has
no successors. We sometimes refer to the length |x| of x as its level in the tree.
A path π of a tree T is a prefix-closed set π ⊆ T such that ε ∈ π and for every
x ∈ π, either x is a leaf or there exists a unique c ∈ N such that x · c ∈ π. A
path is full if it contains a leaf.

An edge in T is a pair 〈x, x · c〉 ∈ T × T . The set of edges in T is denoted
Edge(T). We sometimes refer to a path π as a sequence of edges. Then, we say
that an edge 〈x, x · c〉 is in π iff both x and x · c are in π. Given an alphabet Σ, a
weighted Σ-labeled tree is a triple 〈T, V, C〉, where T is a tree, V : T → Σ maps
each node of T to a letter in Σ, and C : Edge(T) → R maps each edge of T to
a cost in R.

A run of a nondeterministic weighted automaton on a word can be thought
of as a Q-labeled weighted tree with branching degree 1. Extending this notion,
a run of an alternating automaton is a “real” Q-labeled weighted tree. Formally,
given a word w = σ1 · σ2 · · ·σn, a run of A on w is a Q-labeled weighted tree
τ = 〈Tr, r, ρ〉, such that the following hold:

– ε ∈ Tr and r(ε) = q0.

– Consider a node x ∈ Tr with r(x) = q and δ(q, σ|x|+1) = θ. There is a (pos-
sibly empty) set S = {(q1, c1), . . . , (qk, ck)} ⊆ 2Q×R such that S minimally
satisfies θ and for all 1 ≤ d ≤ k, we have that x · d ∈ Tr, r(x · d) = qd, and
ρ(x, x · d) = cd.

For example, if δ(q0, σ1) = ((q1, 2) ∨ (q2, 3)) ∧ ((q3, 0) ∨ (q4,−2)), then possible
runs of A on σ1 have a root labeled q0, have one node in level 1 labeled q1 (and
the weight of the edge to it is 2) or q2 (with edge weight 3), and have another
node in level 1 labeled q3 (with edge weight 0) or q4 (with edge weight −2).
Note that if θ = true, then x need not have children. This is the reason why Tr

may have leaves before level n. Also, since there exists no set S as required for
θ = false, we cannot have a run that takes a transition with θ = false.

An AWA in which all the transitions are disjunctions is simply an NWA. An
automaton in which all the transitions are conjunction is universal. An automa-
ton that is both universal and nondeterministic (that is, δ(q, σ) ∈ Q ×R for all
q and σ) is deterministic.

As in the nondeterministic case, we want to define LA to assign weights to
words in Σ∗. To be consistent with the nondeterministic case, we want to define
LA(w) = min{(val(τ)) : τ is a run of A on w}. If A does not have runs on w,
then w is not in the domain of LA. For this definition to be complete, we need
to define val(τ) for a run τ . As discussed in Section 1, we suggest and study two
semantics for val. Let τ = 〈T, r, ρ〉.

– In the max semantics, the value of every path in the tree is the sum of costs
along the path, and the value of a run is the maximal value of a full path.
Formally, max-val(τ) = max{

∑
e∈π(ρ(e)) : π is a path in T }.

5

– In the sum semantics, the value of a run is the sum over all the costs in the
edges of τ . Formally, sum-val(τ) =

∑
e∈Edge(T) ρ(e).

Note that the two semantics are relevant only for universal transitions (that
is, for transitions with ∧). Note also that the sum semantics involves some non-
trivial technical issues. To see this, note for example our requirement for the set
S in the definition of a run tree to minimally satisfy the transition function. In
the Boolean setting, as well as in the max semantics, we can remove the min-
imality requirement, as runs are monotonic: the more branches we have in the
run tree, the more difficult it is for the run to be accepting or to have a minimal
value. On the other hand, in the sum semantics, since A may have transitions
with negative costs, sending more copies may actually reduce the value of a run.
Moreover, even when all costs are positive, in the Boolean or the max semantics,
it is clear that we have no reason to have multiple copies of the same state in
the same level of the run tree. This is why S is a set of states, and no multiple
occurrences of the same state are possible. In the sum semantics, one could argue
that such multiple occurrences should be allowed, as they reflect the fact that
some mission has to be fulfilled (and payed for) several times. We preferred not
to proceed with this multiple-occurrence semantics, as it can be simulated by
our sum semantics (by duplicating states).

We abbreviate the different types of automata by acronyms in {max-, sum-}×
{A, U, N, D}×{WA}. For example, max-UWA refers to a universal weighted au-
tomaton in the max semantics. For nondeterministic or deterministic automata
we omit the semantics prefix and simply use NWA and DWA, respectively.

For two weighted languages L1 and L2, and c ∈ R, we use −L1, L1 + L2,
max{L1, L2}, and c · L1 to denote the weighted languages that negate L1, sum
L1 and L2, take their maximum, and multiply L1 by c. Thus, for every word
w ∈ Σ∗, we have that (−L1)(w) = −L1(w), (L1 + L2)(w) = L1(w) + L2(w),
max{L1, L2}(w) = max{L1(w), L2(w)}, and (c · L1)(w) = c · L1(w). Note that
(L1 +L2)(w) and max{L1, L2}(w) are defined only if both L1(w) and L2(w) are
defined.

We say that two AWAs A1 and A2 are equivalent if for all w ∈ Σ∗ it holds
that LA1

(w) = LA2
(w). For two classes of automata γ1 and γ2, we say that γ2 is

more expressive than γ1, denoted γ1 ≤ γ2, if every language L that is recognized
by an automaton in γ1 can also be recognized by an automaton in γ2. We also
use the notations γ1 6≤ γ2, γ1 < γ2, and γ1 6= γ2, derived as expected from
γ1 ≤ γ2.

3 The Max Semantics

In this section we study the max semantics. As we mentioned above, one moti-
vation for the max semantics is the duality with the min semantics of nondeter-
minism. We first formalize this duality and then study other properties of the
max semantics.

6

3.1 The duality between the min and the max semantics

For a formula θ ∈ B+(Q × R), let θ̃ be the formula obtained from θ by
switching ∧’s and ∨’s, switching true’s and false’s, and negating all the costs
in the atoms of θ. If, for example, θ = (p, 3) ∨ (true ∧ (q,−5)), then θ̃ =

(p,−3) ∧ (false ∨ (q, 5)). For a transition function δ, let δ̃ be the transition
function obtained from by dualizing δ. That is, for all q ∈ Q and σ ∈ Σ, we

have that δ̃(q, σ) = δ̃(q, σ). Given an AWA A = 〈Q, Σ, q0, δ〉, its dual AWA is

Ã = 〈Q, Σ, q0, δ̃〉.
Dualizing an alternating automaton in the unweighted setting complements

the language of the automaton. Intuitively, it follows from the fact dualization
amounts to switching the roles between the two players in the two-player game
that the automaton models. In the case of max-AWAs, dualization is more in-
volved and corresponds to negating the language of the automaton. Formally,
we have the following.

Lemma 1. Let A be a max-AWA. Then, L(Ã) = −L(A).

Proof. We first prove that for every word w ∈ Σ∗, we have that L eA(w) is
the maximal value of a minimal path in a run of −A on w, where −A is the
max-AWA obtained from A by multiplying all the costs by −1. Proofs of duality
claims such as this are usually technical. We give the main idea of the proof.
The value of a word w in LA can be thought of as the outcome of the following
two-player game. The set of states in the game is Q. The game starts in the state
q0. In every round, Player 1 (the maximizer) chooses a set E ⊆ Q that satisfies
δ(qi, wi). Player 2 (the minimizer) then chooses a state qi+1 ∈ E, and the game
continues in the same manner from qi+1, reading wi+1, and so on. The game
ends when the last letter in w is read, and the value of the game is the sum of
values along the selected transitions. The goal of Player 1 is to maximize the
value, and the goal of Player 2 is to minimize it.

When the same game is played on Ã, the roles of the players are interchanged.
Thus, Player 1 is now the minimizer, and Player 2 is the maximizer. The path
induced by this game corresponds to a minimal path in a maximal run of A
on w. Indeed, Player 1 determines which path is taken in every run of A, and
Player 2 determines which run is taken. This implies that the value of every
w ∈ Σ∗ in L eA is the value of the minimal path in a maximal run of A on w.

Now, for every word w ∈ Σ∗, we have that L eA(w) = max{min{
∑

e∈π(−ρ(e)) :
π is a path in τ} : τ is a run of A on w} = max{min{−

∑
e∈π(ρ(e)) : π is a path

in τ} : τ is a run of A on w} = max{−max{
∑

e∈π(ρ(e)) : π is a path in τ} : τ

is a run of A on w} = −min{max{
∑

e∈π(ρ(e)) : π is a path in τ} : τ is a run of
A on w} = −LA(w).

A special case of Lemma 1 is when the automaton A is an NWA, in which
case Ã is a max-UWA. We then have the following.

Corollary 1. A weighted language L is recognizable by an NWA iff −L is rec-
ognizable by a max-UWA.

7

3.2 Expressive power

In the Boolean setting, natural questions to ask in the context of expressive
power include closure to Boolean operators, and the added power of each of the
branching modes. It is well known that in the Boolean setting, alternation and
nondeterminism do not add to the expressive power of deterministic automata,
and the latter are closed under union, intersection, and complementation. In the
weighted setting, the operators that correspond to the Boolean ones are min,
max, and negation. As we have seen above, max-AWAs are closed under nega-
tion. As in the Boolean setting, closure under min and max is easy, and follows
from the semantics of the transitions of max-AWAs. Likewise, max-UWAs are
closed under max.

In the Boolean setting, nondeterministic automata are closed under intersec-
tion. Indeed, the “product construction” enables us to trace several automata
in parallel. Moreover, the “subset construction” enables us to trace even an un-
bounded type of intersection. Consequently, in the Boolean setting, alternation
can be removed. We now turn to study the added expressive power of universal
branches in the max semantics. We show that NWAs are not closed under max,
and conclude that alternation in max-AWAs cannot be removed.

Let Σ = {a, b}. For σ ∈ Σ, let Lσ be the language that maps w ∈ Σ∗ to the
number of occurrences of σ in w. In [4], the languages La and Lb are used in
order to show that DWAs are not closed under min. Here we follow similar ideas
and use them in the study of closure under max.

Theorem 1. NWAs and DWAs are not closed under max.

Proof. Consider the language L = max{La, Lb}. The language La can be defined
by a DWA with a single self loop that has cost 1 to a and cost 0 to b, and similarly
for Lb. In the full version, we prove that no NWA can recognizes L. Essentially, it
follows from the fact that all the reachable a-cycles in an NWA for L must have
a strictly positive cost, which implies that runs on the word an+1bn+1, where
n is the number of states in the NWA, suggest runs with value strictly smaller
than n + 1 to words of the form ajbn+1, for j < n + 1.

Since max-UWAs dualize NWAs, we can dualize Theorem 1 as follows.

Theorem 2. max-UWAs and DWAs are not closed under min.

Proof. We start with max-UWAs. Assume by way of contradiction that A is a
max-UWA that recognizes L = min{La, Lb}. From Lemma 1, we get that Ã is

an NWA such that L eA = −LA. Consider the NWA B obtained from Ã by adding
1 to the cost of every transition. It is easy to verify that for every word w, we
have that LB(w) = |w|−LA(w). On the other hand, max{La(w), Lb(w)} = |w|−
min{La(w), Lb(w)} = |w| −LA(w). It follows that B is an NWA that recognizes
max{La, Lb}, which contradicts the proof of Theorem 1. Finally, observe that
if A is a DWA, then B is a DWA as well, again contradicting the proof of
Theorem 1.

8

a, 1
b, 0

a, 0
b, 1

a, 1
b, 0

a, 0
b, 1

Fig. 1. A max-UWA for max{La, Lb}.

Since max-UWAs are closed under max (in particular, Fig. 1 describes a
max-UWA for max{La, Lb}), Theorem 1 implies that alternation cannot be
removed in the weighted setting with the max semantics. Combining this with
dualization, we conclude with the following.

Corollary 2. max-UWA 6= NWA, max-AWA > NWA, and max-AWA >

max-UWA.

3.3 Arithmetics

In the weighted setting, additional interesting properties of automata are
related to the fact they manipulate real values. In this section we consider the
closure of max automata under addition and multiplication by a scalar.

Theorem 3. DWAs, NWAs, max-UWAs, and max-AWAs are closed under ad-
dition.

Proof. The proof is by construction: Given automata A1 and A2, we construct
an automaton A of the same class such that LA = LA1

+ LA2
. We describe the

construction in detail in the full version. Essentially, the state space of A is the
product of the state spaces of A1 and A2, and the transitions from 〈q1, q2〉 sum
the corresponding transitions from q1 and q2.

Next, we consider scalar multiplication. Clearly, multiplying all the costs of
an AWA by a scalar c causes the value of every run to be multiplied by c (since
the costs are summed along a path in the run tree). If c ≥ 0, then multiplying
by c is a monotonic (increasing) function. That is, if r1 and r2 are two runs, and
val(r1) ≤ val(r2), then c ·val(r1) ≤ c ·val(r2). Therefore, the cheapest run stays
the cheapest run, implying the following theorem.

Theorem 4. max-AWAs, max-UWAs, NWAs and DWAs are closed under mul-
tiplication by a positive scalar.

The case of a negative scalar is different, as multiplication is an anti-monotonic
(decreasing) function. Dualization, together with Th. 4, imply that max-AWAs
are closed under multiplication by a negative scalar. For the other classes, the
fact that such a multiplication causes the cheapest run to become the most
expensive run is crucial:

Theorem 5. NWAs and max-UWAs are not closed under multiplication by a
negative scalar.

Proof. In the proof of Theorem 1, we saw that there is no NWA for max{La, Lb}.
On the other hand, there is an NWA A for min{La, Lb}. Assume by way of

9

contradiction that NWAs are closed under multiplication by a negative scalar.
Then, by multiplying A by −1 we can obtain an NWA A′ for −min{La, Lb}.
For every word w, we have that max{La(w), Lb(w)} = |w|−min{La(w), Lb(w)}.
It is easy to construct an automaton B the recognizes the language L(w) = |w|.
By Lemma 3, NWAs are closed under addition. By adding A′ and B we obtain
an NWA C such that LC(w) = |w| − min{La(w), Lb(w)} = max{La(w), Lb(w)}.
So, C is an NWA that recognizes max{La, Lb}, contradicting the fact that no
such NWA exists. The proof for max-UWAs is dual.

4 The Sum Semantics

Recall that in a sum-AWA A, the value of a run is the sum of all the costs in
the run tree. This corresponds to the intuition that A spawns copies that fulfill
different tasks and has to pay for the costs of all tasks. The first observation
we make about sum-AWAs, which makes them an interesting arithmetic tool, is
that they can recognize languages in which the weight of a word is not linear in
its length.

4.1 Exponential weights

In NWAs, and in fact even in max-AWAs, the value of a run of A on a word
w of length n is bounded from above by cmax ·n, where cmax is the maximal cost
in A. Indeed, even if several copies of the automaton run on the same prefix of
the word, only one copy contributes to the value of the run, which is therefore
linear in the length of the word. When we allow summing over all the weights in
a tree, this is no longer true, and the weight of a word may become exponential.
Consider for example the automaton Aexp in Fig. 2 (we draw UWAs the same
way we draw NWAs. but keep in mind that in UWAs, transitions with the same
label are conjunctively related). The single run tree of Aexp on the word an is a
complete binary tree of depth n. Each level doubles the number accumulated so
far (starting with 2), and so LAexp

(an) = 2n.

Aexp: a, 1

a, 0
a, 0a, 1

Ala:

a, 0

b, 0

b,−1

a, 0 a, 0
a, 0
b, 0

Fig. 2. The sum-UWAs Aexp and Ala.

Since the number of edges in a run tree on a word w is bounded by d|w|+1,
where d is the branching degree of the tree, and d is bounded by the number
of states of the automaton, we cannot go beyond an exponential weight, either
positive of negative:

Lemma 2. Let A be a sum-AWA with n states. For every word w ∈ Σ∗, we
have that min{0, cmin · n|w|+1} ≤ LA(w) ≤ cmax · n|w|+1, where cmin and cmax

are the minimal and maximal costs in A, respectively.

10

4.2 Expressive power

One could argue that it is not “fair” to compare sum-AWAs with NWA,
due to the ability of the first to assign super-linear weights. As we show now,
alternation cannot be removed even if we restrict attention to sum-UWAs with
linear-bounded language. To see this, consider the “leading a’s” sum-UWA Ala

in Fig. 2. One can verify that for all w ∈ {a, b}∗, we have that

LAla
(w) =

{
−k if w ∈ ak · b · (a + b)∗ for k ≥ 0,

0 otherwise.

It is not hard to prove that there is no NWA for LAla
. Thus, the power of

sum-AWAs goes beyond the ability to assign super-linear weights.
We now turn to study closure properties for sum-AWAs. As in the Boolean

setting, closure under min and summation is straightforward, as they correspond
to existential and universal transitions. Also, as has been the case in the max
semantics, closure under multiplication by a positive scalar c is easy, as we only
have to multiply the costs of A by c. Such a multiplication would work also with
a negative scalar in case the automaton is universal. Indeed, all the costs in the
single run are multiplied by the scalar. The general case, of a negative scalar and
sum-AWAs is less clear, and is related to the problem of closure under max. For
this problem, we have examples to the lack of closure for following two fragments
of sum-AWAs.

Theorem 6. sum-UWAs and sum-AWAs with non-negative costs are not closed
under max.

Proof. Consider the language L = max{La, Lb}. Recall that La and Lb are recog-
nized by DWAs with non-negative costs, which are a special case of sum-AWAs.
We prove that there is no sum-UWA nor sum-AWA with non-negative costs for
L.

Consider a sum-UWA A with n states, and consider the run τ of A on
w = an+1bn+1. Each level of τ consists of states of A, where every state appears
0 or more times. We characterize the levels by vectors in NQ, which we represent
asNn. For example, the vector (2, 0, 1) means that in this level there are 2 copies
of q0, 1 copy of q2 and no copies of q1. Thus, τ can be thought of as a sequence
of vectors. We say that a vector β is a configuration of A.

Let β be a configuration, and consider what A does when it reads b. Every
state qi ∈ Q sends out βi copies of states in δ(qi, b). That is, there are di

1, ..., d
i
n

such that qi moves to the vector (di
1, ..., d

i
n). Intuitively, qi sends di

j copies of

qj . Let D be the Nn×n matrix whose entries are Dij = di
j . It is easy to verify

that when A reads b in configuration β, it moves to the vector Dβ (where β is
considered as a column vector). Furthermore, when A is in configuration β and
reads b, every state qi accumulates wi cost in the transition. Thus, the total cost
accumulated in the transition is

∑n

i=1 βiwi = 〈β, w〉 (where w = (w1, ..., wn) and
〈·, ·〉 denotes the standard inner product).

11

Let α0, ..., αn, β0, ..., βn be the levels of τ . For all 0 < i ≤ n it holds that
βi = Dβi−1. Observe that β0, ..., βn are n + 1 vectors in Qn. Thus, there exists
an index 1 ≤ k ≤ n such that βk is linearly dependent on β0, ..., βk−1, so we can

write βk =
∑k−1

j=0 cjβj for some c0, ..., ck−1 ∈ Q. Consider what happens when
A reads b from βk. The new configuration is

Dβk = D

k−1∑

j=0

ckβj =
k−1∑

j=0

cjDβj =
k−1∑

j=0

cjβj+1 =
k−1∑

j=1

cj−1βj + ck−1

k−1∑

j=0

ckβj

In particular, βk+1 is also linearly dependent on β0, ..., βk−1. It is easy to prove by
induction that for all t ≥ k it holds that βt is linearly dependent on β0, ..., βk−1.

Next, observe that since A has a single run, then the run must accumulate
the cost n + 1 by configuration αn+1, and must stay 0 through β0, ..., βn+1. Let
w = (w0, ..., wn) denote the cost vector accumulated at a b-transition, then for

all 0 ≤ i ≤ n+1 it holds that 〈βi, w〉 = 0. Let γ =
∑k−1

j=0 ejβj for e1, ..., ek−1 ∈ Q,
then the cost accumulated from γ when reading b is

〈γ, w〉 =
k−1∑

j=0

ej〈βj , w〉 =
k−1∑

j=0

ej · 0 = 0

We conclude that when A reads to an+1bn+2 it accumulates cost 0 in all the
transitions on the b-block. Hence, the weight assigned by A to an+1bn+2 is n+1,
which is a contradiction.

We proceed to sum-AWA with non-negative costs. Let A be a sum-AWA
with n states and non-negative costs. Consider the cheapest run τ of A on
w = a2n+1b2n+1. Since every prefix of this run is also a run of A on a prefix
of w, we get that after reading a2n+1, the accumulated cost must be exactly
2n + 1. Indeed, a lower cost would imply that the value of a2n+1 in A is less
than 2n +1, and, since accumulated costs are nonnegative, a higher cost implies
that the weight of w is greater than 2n + 1. As we show in the full version, it
follows that we can pump w to a word w′ = a2n+1bk, with k > 2n + 1, such that
A assigns to w′ a weight smaller than k.

Since sum-AWAs are closed under multiplication by a negative scalar, the fact
they cannot recognize max{La, Lb} implies they also cannot recognize min{La, Lb},
which can be recognized by an NWA.4 Thus, keeping in mind the ability of
sum-AWA to assign super-linear weights, we can conclude with the following.

Corollary 3. sum-UWA 6= NWA, sum-AWA > NWA, and sum-AWA >

sum-UWA.

4 A popular example for the added power of NWA with respect to DWA is the language
that maps a · bi · c to i and a · bi · d to 2i [13]. Interestingly, this language can be
recognized by a sum-UWA.

12

4.3 sum-UWA and polynomials

For an automaton A over a singleton alphabet {a} and a function f : N \
{0} → R, we say that A represents f if for all n ∈ N \ {0}, we have that
LA(an) = f(n). In this section, we study the presentation of polynomials by
sum-UWAs. Note that this study is not interesting in the context of NWAs or
max-AWAs, as the latter can only represent linear functions.

Since we restrict attention to the alphabet {a}, all the words are of the form
an for some n, and we abbreviate LA(an) by LA(n). Observe that for every AWA
A we have LA(0) = 0, which is why we consider the domain N \ {0}. By adding
ǫ-transitions, we can easily extend the results to functions f : N→ R.

We start by describing our basic “building blocks”. Consider the sequence of
sum-UWAs A1, A2, A3, . . . appearing in Fig. 3. It is easy to see that A1 defines
the polynomial f1(n) = n. As for Ad, for d ≥ 2, note that a run of Ad on an

sends a copy of Ad and a copy of Ad−1 to read an−1. Accordingly, a copy of Ad−1

is sent to read ai for all 0 ≤ i ≤ n − 1. Thus, LAd
(n) =

∑n

i=0 LAd−1
(n − i) =∑n−1

i=0 LAd−1
(i). Let fd(n) = LAd

(n).

Ad:
Ad−1

a, 0

a, 0

A1:

a, 1

Fig. 3. The automata Ad.

Lemma 3. For all n ≥ 1 and d ≥ 1, we have that fd(n) =

{(
n
d

)
if d ≤ n

0 otherwise.

Since
(
n
d

)
is a polynomial of degree d, the set {A1, ...,Ad} of sum-UWAs

represents a set of polynomials of degrees {1, ..., d}. It is easy to construct a
DWA A0 such that LA0

(n) = 1. Thus, the set {A0,A1, ...,Ad} represents a
set of polynomials with degrees {0, 1, ..., d}. We claim that this set allows us to
represent every polynomial. To prove this, we use the following lemma (the proof
is a basic exercise in linear algebra).

Lemma 4. Let {p0, ..., pd} be polynomials over a commutative ring R such that
pi is of degree i. The set {p0, ..., pd} forms a basis to the space of polynomials of
degree at most d.

By Lemma 4, and by the closure of sum-UWAs under addition and scalar multi-
plication, we conclude that sum-UWAs can span the entire space of polynomials
of degree at most d. Note that according to Lemma 4, spanning the space requires
coefficients from the ring R. On the positive side, in order to span a polynomial
with coefficients in Z or Q, we only need costs in Z or Q, respectively. On the
negative side, this implies that for coefficients in N we may need costs from Z
(which is the minimal ring containing N). Note that while we only proved exis-
tence, it is easy to make the proof explicit and construct, given a polynomial p,
a sum-UWA that represents it. In order to do it, one simply multiplies Ad by

13

the desired coefficient for nd, then multiplies Ad−1 by a proper scalar so as to
fix the coefficient for nd−1, and so on.

The fact that in order to represent a polynomial with coefficients in N we
may need negative costs is disturbing. We now proceed to show that it is indeed
not necessary: for every polynomial p with non-negative coefficients, we can
construct a sum-UWA Ap with non-negative costs such that LAp

(n) = p(n).
We also give an explicit construction of Ap. As above, it is enough to show that
we can construct a sum-UWA for every monomial nd. Recall that fd(n) is

(
n
d

)

for d ≤ n, and is 0 otherwise. The following lemma shows how to define nd

using {f1(n), ..., fd(n)}. It is a well known result and we give the proof in the
full version. The lemma and the proof refer to S(n, k) – the Stirling number of
the second kind, which is the number of ways to partition a set of size n into k

subsets.

Lemma 5. nd =
∑d

k=1 k!S(d, k)fk(n).

By Lemma 5, we can define nd using {f1(n), ..., fd(n)}, and the coefficients
are non-negative. By adding 1 = n0 to the set {n1, ..., nd} we conclude that
we can span any polynomial with non-negative coefficients using sum-UWAs
with non-negative costs. Moreover, we observe that all our constructions are of
sum-UWAs with self loops only. This follows from the definition of the basic
blocks and the constructions proving the closure of sum-UWA to addition and
multiplication by a scalar, which preserve this property.

We can thus conclude with the following (the result about non-positive co-
efficients follows from the closure under multiplication by a negative scalar).

Theorem 7. For every polynomial p with coefficients in a ring R ∈ {R,Q,Z},
we can construct a sum-UWA A that defines p (with cost in R,Q or Z, respec-
tively). Moreover, if the coefficients of p are all non-negative (non-positive), then
we can construct A with non-negative (non-positive, resp.) costs only.

5 Discussion

We introduced and studied two semantics – max and sum, for universal transi-
tions of alternating weighted automata on finite words. The two semantics cor-
respond to different interpretations of conjunctions in a weighted setting, and
are of interest in quantitative formal reasoning. We showed that in both seman-
tics, alternation strictly increases the expressive power of the automata. Also, in
the sum semantics, it enables the automaton to represent super-linear functions,
making universal transitions more significant then their dual nondeterministic
transitions.

We plan to continue our study in several directions. In the theoretical front,
we find the ability to represent polynomial by automata very interesting. In par-
ticular, it is interesting to see which operations on polynomials can be performed
on the sum-AWAs that represent them. Our results here already include addition
of two polynomials and their multiplication by a scalar. It is a nice exercise to see
that given a sum-AWA that represents a polynomial p, we can easily construct

14

a sum-AWA for the derivative of p, or its integration. More challenging are con-
structions that correspond to multiplication of polynomials, decision procedures
about their roots, and so on. In the more practical front, we are developing a
weighted version of LTL that can specify quality of satisfaction. Conjunctions in
the new logic can be interpreted in both semantics, and the translation to AWAs
is a basic procedure in reasoning about specifications in the logic. Problems like
membership (that is, finding weights) are easily decidable, and we are study-
ing fragments for which language containment (that is, its weighted variant) is
decidable. We are also studying an extension to automata on infinite words.

References

1. B. Aminof, O. Kupferman, and R. Lampert. Reasoning about online algorithms
with weighted automata. ACM Transactions on Algorithms, 6(2), 2010.

2. C. Baier, N. Bertrand, and M Grösser. Probabilistic automata over infinite words:
Expressiveness, efficiency, and decidability. In Proc. 11th International Workshop

on Descriptional Complexity of Formal Systems, pages 3 – 16, 2006.
3. K. Chatterjee, L. Doyen, and T. Henzinger. Quantative languages. In Proc. 17th

CSL, pages 385–400, 2008.
4. K. Chatterjee, L. Doyen, and T. Henzinger. Alternating weighted automata. In

Proc. 17th FCS, LNCS 5699, pages 3–13, 2009.
5. K. Culik and J. Kari. Digital images and formal languages. Handbook of formal

languages, vol. 3: beyond words, pages 599–616, 1997.
6. M. Droste and P. Gastin. Weighted automata and weighted logics. In Proc. 32nd

ICALP, pages 513–525, 2005.
7. E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc.

32nd FOCS, pages 368–377, 1991.
8. D. Krob. The equality problem for rational series with multiplicities in the tropical

semiring is undecidable. Int. J. of Algebra and Computation, 4(3):405–425, 1994.
9. D. Kuperberg. Linear temporal logic for regular cost functions. In Proc. 28th

STACS, pages 627–636, 2011.
10. O. Kupferman. Avoiding determinization. In Proc. 21st LICS, pages 243–254, 2006.
11. O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Ad-

vances in Temporal Logic, pages 109–127. Kluwer Academic Publishers, 2000.
12. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to

branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.
13. M. Mohri. Finite-state transducers in language and speech processing. Computa-

tional Linguistics, 23(2):269–311, 1997.
14. M. Mohri, F.C.N. Pereira, and M. Riley. Weighted finite-state transducers in speech

recognition. Computer Speech and Language, 16(1):69–88, 2002.
15. M.P. Schützenberger. On the definition of a family of automata. Information and

Control, 4(2-3):245–270, 1961.
16. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Proc.

12th CAV, LNCS 1855, pages 248–263, 2000.
17. W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer

Science, pages 133–191, 1990.
18. M.Y. Vardi. Nontraditional applications of automata theory. In Proc. 11th STACS,

LNCS 789, pages 575–597, 1994.
19. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information

and Computation, 115(1):1–37, 1994.

15

