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Abstract12

We study a class of reachability problems in weighted graphs with constraints on the accumulated13

weight of paths. The problems we study can equivalently be formulated in the model of vector14

addition systems with states (VASS). We consider a version of the vertex-to-vertex reachability15

problem in which the accumulated weight of a path is required always to be non-negative. This is16

equivalent to the so-called control-state reachability problem (also called the coverability problem)17

for 1-dimensional VASS. We show that this problem lies in NC: the class of problems solvable in18

polylogarithmic parallel time. In our main result we generalise the problem to allow disequality19

constraints on edges (i.e., we allow edges to be disabled if the accumulated weight is equal to a20

specific value). We show that in this case the vertex-to-vertex reachability problem is solvable in21

polynomial time even though a shortest path may have exponential length. In the language of22

VASS this means that control-state reachability is in polynomial time for 1-dimensional VASS with23

disequality tests.24
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1 Introduction28

In this paper we study reachability problems in weighted graphs with constraints on the29

accumulated weight along a path. We show that the vertex-to-vertex reachability problem is30

in NC if the constraint is that the accumulated weight must always be non-negative, and31

the problem is in polynomial time if we additonally allow disequality constraints on edges32

(i.e., constraints that prevent an edge from being taken in a path if the accumulated weight33

prior to taking the edge is equal to a specific value). In both cases a shortest path satisfying34

the constraints may have length exponential in the problem description. Several related35

problems have been studied in the literature, including the problem of finding a path from a36

source vertex to target vertex that has a specific total weight [12].37

The problems we study can naturally be formalised as reachability problems for types of38

one-counter machines, and the majority of the related work has been presented in this context.39

Under this correspondence, the value of the counter represents the accumulated weight along a40

path, and tests on the counter encode constraints on allowable paths. Algorithmic properties41

of one-counter machines have been studied by many authors over several decades [2, 3, 5, 6,42

7, 8, 9, 11]. The above references are a small subset of the extensive literature on one-counter43

machines, but they well illustrate that there are many variations on the basic model and that44
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23:2 Coverability in 1-VASS with Disequality Tests

these variations can lead to the model having substantially different algorithmic properties.45

Particular features mentioned in the references above, driven by applications to automated46

verification and program analysis, include equality tests, disequality tests, inequality tests,47

parametric tests, binary updates, polynomial updates, and parametric updates.48

Analysing the complexity of reachability in the presence of the features listed above leads49

to a rich complexity landscape. It is shown in [11] that control-state reachability is decidable in50

NL for a “plain vanilla” model of one-counters machine—namely with a counter taking values51

in the nonnegative integers with operations increment, decrement, and zero testing. Thinking52

of one-counter machines as one-dimensional vector addition systems with states (1-VASS), it53

is natural to allow the counter to be updated by adding integer constants in binary. In this54

case, still with equality tests, control-state reachability becomes NP-complete [9]. The NP55

upper bound here is non-trivial since, due to the binary encoding of integers, a computation56

that reaches the goal state may have length exponential in the size of the machine. If one57

enriches the model further by introducing inequality tests (comparing the counter with an58

integer constant) then control-state reachability becomes PSPACE-complete [6]. A model of59

intermediate complexity is one with equality and disequality tests (introduced in [5], with60

applications to temporal-logic model checking). In this case the complexity of control-state61

reachability is open (between NP and PSPACE).62

In this paper we consider 1-VASS with disequality tests, but no equality tests. In terms63

of 1-VASS, our main result states that the control-state reachability problem is solvable in64

polynomial time for 1-VASS with disequality tests. This result confirms the intuition that65

disequality tests are weaker than equality tests. The main technical challenge to obtaining66

a polynomial-time bound is that a run witnessing that a given control state is reachable67

may have length exponential in the description of the counter machine. A standard way68

to overcome this obstacle in related settings is to show that one may restrict attention to69

computations that fit a regular pattern (usually in terms of iterating a “small” number of70

cycles). Here the presence of disequality tests proves to be surprisingly disruptive: it destroys71

the monotonicity of the transition relation and prevents from freely iterating positive-weight72

cycles. (For example, the lack of monotonicity means that it is coNP hard to determine73

whether, given a control state s0, for all counter values u ∈ N the configuration (s0, u)74

is unbounded, i.e., can reach infinitely many configurations—see Figure 1—whereas the75

same problem for 1-VASS without tests is easily seen to be decidable in polynomial time.)76

Resolving the complexity of reachability for 1-VASS with both equality and disequality tests77

remains open. We hope that the techniques developed here can help solve this challenging78

problem.79

To complement our main result, we show that for 1-VASS without tests control-state80

reachability (and hence also boundedness) is decidable in NC, i.e., the subclass of P consisting81

of problems solvable in polylogarithmic parallel time. Problems in NC are in particular82

solvable in polylogarithmic space. Related to this, Rosier and Yen [15] have shown that83

boundedness for VASS is NL-complete in case there are absolute bounds on the dimension84

and bit-size of integer vectors.85

Due to constraints on space, most proofs appear in the appendix.86

2 Definitions87

We write N to denote the set of all nonnegative integers 0, 1, 2, . . . In presenting our results88

we assume familiarity of the reader with basic graph theory and computational complexity.89
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Figure 1 A 1-VASS with disequality tests, derived from a 3-CNF formula ϕ having propositional
variables X1, . . . , Xm and clauses C1, . . . , Cn. We have states s1, . . . , sn—one state for each clause—
and an initial state s0. The reduction is such that (s0, u) is unbounded for all u ∈ N iff ϕ is
unsatisfiable. Let p1, . . . , pm be the first m primes and write P := p1 · · · pm for their product.
For all u ∈ N, define the propositional assignment valu : {X1, . . . , Xm} → {0, 1} by valu(Xi) = 1
if and only if pi | u. Suppose that state s corresponds to a clause C that mentions variables
Xi1 , Xi2 , Xi3 . Then we place a self-loop on s with increment ci := pi1pi2pi3 and add disequlity tests
on s (or equivalently on the self-loop on s) for all those values u ∈ {P, P + 1, . . . , P + pi1pi2pi3 − 1}
where the assignment valu satisfies the clause C. Given u ∈ {0, 1, . . . , P − 1}, observe that the
configuration (s0, u) is bounded iff valu satisfies ϕ (see Appendix A for a complete proof).

One-Dimensional Vector Addition Systems with States and Tests. A 1-VASS with dis-90

equality tests is a tuple V = (Q,D,∆, w), where Q is a set of states, D = {Dq}q∈Q is a91

collection of cofinite subsets Dq ⊆ N, ∆ ⊆ Q×Q is a set of transitions, and w : ∆→ Z is a92

function that assigns an integer weight to each transition. In the special case that each Dq93

equals N, we simply call V a 1-VASS (and we omit the collection D).94

A configuration of V is a pair (q, z) comprising a state q ∈ Q and a nonnegative integer z ∈95

N referred to as the counter value. We write Conf for the set Q× N of all configurations.96

We define a partial order on Conf by (q, z) ≤ (q′, z′) if and only if q = q′ and z ≤ z′. A97

configuration (q, z) is valid if z ∈ Dq.98

A path in V is a sequence of states π = q1, . . . , qn such that (qi, qi+1) ∈ ∆ for all99

i ∈ {1, . . . , n−1}. We sometimes refer to such a path as a q1-qn path. Let π′ = p1, p2, . . . , pm100

be another path such that qn = p1, we define π1 · π2 := q1, . . . , qn, p2, . . . , pm. Given states101

p, q, r, a set P of p-q paths, and a set R of q-r paths, we define P ·R := {π ·π′ | π ∈ P, π′ ∈ R}.102

The weight of π is defined to be weight(π) :=
∑n−1
i=1 w(qi, qi+1). A (possibly empty) prefix103

of π is said to be minimal if it has minimal weight among all prefixes of π. Define pmin(π)104

to be the weight of a minimal prefix of π.105

A run is a sequence (q1, z1), . . . , (qn, zn) of configurations of V such that there is a path106

π = q1, . . . , qn with zi+1 = zi + w(qi, qi+1) for i = 1, . . . , n− 1. We write (q1, z1) π→ (qn, zn)107

to denote such a run. Observe that runs are not allowed to reach negative counter values. A108

valid run is a run whose configurations are all valid. Intuitively, a valid run through q can109

proceed if and only if the current counter value is in Dq.110

In computational problems all numbers in the description of V are given in binary. Given111

a state q we represent the cofinite set Dq as the complement of an explicitly given subset112

of N. Given this convention, we can assume without loss of generality that for all states q the113

set Dq is either N or N \ {g} for some g ∈ N; see Appendix B. For states q with Dq = N \ {g},114

we refer to the single missing value g in the domain as the disequality guard on q.115

The Coverability and Unboundedness Problems. Let V = (Q,∆, D,w) be a 1-VASS with116

disequality tests, and let s and t be two distinguished states of V . The Coverability Problem117

asks whether there exists a valid run in V from (s, 0) to (t, z) for some z ∈ N (in which118

case we say that (s, 0) can cover t). The Unboundedness Problem asks whether the set of119

configurations reachable from (s, 0) is infinite (in which case we say that (s, 0) is unbounded).120

The Coverability problem reduces to the Unboundedness problem by, intuitively, forc-121
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Figure 2 A 1-VASS with disequality tests. Disequality guards are denoted by 6=. For example,
in state s1 the set Ds1 is N \ {60}, and no run goes through s1 if its current counter value is 60.

ing (t, 0) to be unbounded using a positive cycle, and removing all states that cannot reach t122

in the underlying graph of V. In fact, the following holds.123

I Lemma 1. There is an NC2-computable many-one reduction from the Coverability Problem124

to the Unboundedness Problem.125

Henceforth, we focus on the complexity of deciding the Unboundedness Problem. In126

Section 3 we prove that the Unboundedness Problem for 1-VASS with disequality tests is127

decidable in polynomial time. Since NC2 ⊆ P, by Lemma 1 we also have that the Coverability128

Problem in this setting is decidable in polynomial time. In Section 4 we prove that the129

Unboundedness Problem for 1-VASS (without disequality tests) is in NC2, and we deduce130

that the Coverability Problem for 1-VASS is decidable in NC2.131

3 Unboundedness for 1-VASS with Disequality Tests132

Fix a 1-VASS V = (Q,D,∆, w) with disequality tests and a distinguished state s ∈ Q. We133

are interested in determining whether the configuration (s, 0) is unbounded.134

For a (possibly infinite) path π = q1, q2, . . ., denote by blocked(π) the set of z ∈ N such135

that the unique induced run either contains a negative counter value or violates a disequality136

guard. That is, π does not lift to a valid run from the configuration (q1, z).137

I Example 2. In Figure 2, since 41 is the guard on s5 the run (s4, 93), (s5, 41), (s6, 93) is138

not valid and 93 ∈ blocked(s4, s5, s6). Observe that blocked(s4, s5, s6) = [0, 52)∪ {90, 93, 96}139

and blocked((s4, s5, s6)ω) = [0, 52) ∪ {52 ≤ z ≤ 96 | z ≡ 0, 3, 6 (mod 9)}.140

Recall that for a path π, pmin(π) is the weight of a minimum-weight prefix of π. Let141

Q+ ⊆ Q be the set of states q ∈ Q such that there is a positive-weight simple cycle on q142

in the underlying graph of V. For q ∈ Q+ we pick a simple cycle γq such that pmin(γq) ≥143

pmin(γ) for any other positive-weight simple cycle γ on q; write Wq for weight(γq).1 Define144

Conf + := {(q, z) ∈ Conf | q ∈ Q+, z + pmin(γq) ≥ 0}.145

Define a path to be primitive if no proper infix is a positive cycle (note though that a146

primitive path may itself be a positive cycle). We say that a run is primitive if the underlying147

path is primitive. Observe that if ρ is a valid run, none of whose internal configurations (i.e.148

excluding the first and last configurations) lies in Conf +, then ρ is primitive.149

I Example 3. In Figure 2, for s1 ∈ Q+ we pick the simple cycle γs1 = s1, s2, s1 withWs1 = 6.150

Since pmin(γs1) = −12, we have that {z | (s1, z) ∈ Conf +} = [12,∞). Moreover, the path151

s4, s5, s6, s4 is primitive, but s1, s2, s1, s3 is not primitive.152

1 Note that γq does not necessarily maximize Wq.



S. Almagor, N. Cohen, G. A. Pérez, M. Shirmohammadi and J. Worrell 23:5

I Proposition 4. A configuration (s, 0) is unbounded if, and only if, (s, 0) can reach an153

unbounded configuration in Conf +.154

In order to decide whether (s, 0) is unbounded, by Proposition 4, it suffices to compute155

the set of unbounded configurations in Conf + and determine whether (s, 0) can reach this set.156

Define Conf∞ ⊆ Conf + to be the set of all unbounded configurations in Conf +. Observe157

that every configuration (q, z) ∈ Conf + with z /∈ blocked(γωq ) can take the cycle γq arbitrarily158

many times and is thus included in Conf∞. However, even if z ∈ blocked(γωq ), it may still159

be the case that (q, z) is unbounded, by traversing more complicated paths.160

I Example 5. In Figure 2, all configurations (s4, z) with z in N \ blocked((s4, s5, s6)ω) =161

{52 ≤ z ≤ 96 | z 6≡ 0, 3, 6 (mod 9)} ∪ (96,∞) are trivially unbounded and thus included162

in Conf∞. It will transpire that {s4}×{54, 60, 63, 69} ⊆ Conf∞ even though {54, 60, 63, 69} ∈163

blocked((s4, s5, s6)ω).164

In order to reason about the aforementioned complicated paths, we proceed as follows. In165

Section 3.1 we introduce residue classes and chains, which form a partition of Conf +, and are166

the building blocks of our analysis. In Section 3.2 we characterize Conf∞ as the limit of an167

inductive construction. This enables us to reason about the structure of Conf∞ in Section 3.3.168

Finally, in Section 3.4 we show how to compute Conf∞ and decide unboundedness.169

3.1 Residue Classes and Chains170

Given q ∈ Q+ and 0 ≤ r < Wq, we call the set of configurations {(q, z) ∈ Conf + | z ≡ r171

(mod Wq)} a q-residue class. We simply speak of a residue class if we do not want to specify172

the state q. Given a q-residue class R, a set C ⊆ R is called a q-chain if it is a maximal173

subset of R with the property that every pair of configurations (q, z), (q, z′) ∈ C with z < z′174

is connected by a valid run obtained by iterating the cycle γq. Again, we speak of a chain if175

we do not want to specify the state q.176

We draw a distinction between bounded chains and unbounded chains, where a chain177

is bounded if and only if the associated set of counter values is bounded. An unbounded178

q-chain C is contained in Conf∞ since the cycle γq can be taken arbitrarily many times from179

any configuration in C to yield a valid run.180

I Remark 6. For each q-residue class R, each guard value z induces at most two bounded181

chains. Namely, the set of configurations below (q, z) form a chain; and the singleton {(q, z)}182

is also (vacuously) a chain. Note that every residue class also has one unbounded chain.183

That is, the set of configurations above (q, z) with z the highest guard on q. Since there184

are at most |Q| guards, each residue class decomposes as a disjoint union of at most 2|Q|185

bounded chains and a single unbounded chain.186

Intuitively, within each bounded chain we can iterate the cycle γq until hitting a guard. We187

call a residue class R trivial if it consists solely of a single unbounded chain. Note that the188

union of all bounded q-chains is equal to Conf + ∩ {q} × blocked(γωq ).189

I Example 7. As indicated in Figure 3 for the running example, the residue classes {s4}×(52+190

i+ 9N) with i ∈ {0, 1, 3, 4, 6, 7} are indeed trivial, while each residue class {s4}× (52 + i+ 9N)191

with i ∈ {2, 5, 8} consists of two bounded chains {s4} × {52 ≤ z < 88 + i | z ≡ i (mod 9)}192

and {s4} × {88 + i}, and a single unbounded chain {s4} × (88 + i+ 9N).193

One of the main ideas in this section is to show that a configuration is unbounded if and194

only if it can reach an unbounded chain via a valid run whose underlying path π has the form195

π = π0 · γn1
q1
· π1 · · ·πk−1 · γnk

qk
· πk ,196

CVIT 2016
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s1 (6= 60) s4 ( 6= 90, 93, 96) s10 ( 6= 120, 123, 126, 129)
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Figure 3We focus on states s1, s4, and s10 in the 1-VASS in Figure 2, each of which lies on a simple
positive cycle. We also indicate which counter values prevent taking the associated positive cycle.
For example, state s4 has the simple cycle γs4 with Ws4 = 9 and taking γs4 from {s4} × {90, 93, 96}
is not allowed due to disequality guards along γs4 . The columns underneath each state represent
residue classes of that state in Conf +. We colour all unbounded chains in blue and all bounded
chains in pink; thus all blue configurations form the set U0.

where π0, . . . , πk are primitive paths and n1, . . . , nk are non-negative integers. Moreover, we197

give a polynomial bound on the length of the πi and the magnitude of k in terms of the size198

of the underlying 1-VASS (in general, the exponents ni may be exponential in the size of the199

1-VASS). We also show how to detect the existence of such a path in polynomial time.200

Recall the structure of Conf as a partially ordered set. We will use standard order-201

theoretic terminology and notation to refer to sets of configurations: in particular given sets202

of configurations S, S′ ⊆ Conf , we say that S is downward closed in S′ if for all (q, z) ∈ S∩S′203

and (q, z′) ∈ S′ with z′ ≤ z, we have (q, z′) ∈ S.204

3.2 Inductive Characterization of Conf ∞205

We now give an inductive backward-reachability construction of the set of all configurations206

in Conf + that can reach an unbounded chain. Since unbounded configurations can, in207

particular, reach unbounded chains, this set is exactly Conf∞.208

In order for our inductive construction to converge in a polynomial number of steps,209

we essentially consider meta-transitions of the form γkq · π for γq a simple cycle, k ∈ N,210

and π a primitive path. Formally, we define an increasing sequence U0 ⊆ U1 ⊆ U2 ⊆ · · · of211

subsets of Conf + such that
⋃
n∈N Un = Conf∞. Define U0 to be the union of the collection212

of unbounded chains. Given n ∈ N we inductively construct Un+1 as follows. First, define213

U ′n ⊆ Conf + as the set of configurations (q, z) 6∈ Un whose distance to Un is minimal among214

all configurations in Conf + \ Un (here the distance of a configuration (q, z) to Un is the215

length of the shortest valid run from (q, z) to Un). Now define Un+1 ⊆ Conf + to be the216

smallest set such that Un, U ′n ⊆ Un+1 and Un+1 ∩ C is downward closed in every chain C.217

Then
⋃
n∈N Un is the set of configurations in Conf + that can reach an unbounded chain218
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(a) The set U1 is obtained from U0 in Figure 3.
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36

42
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(b) The set U2.

Figure 4 The sets U1 and U2 of the running example. The blue configurations are in U0; green
ones are in U1\U0; yellow one is in U2\U1. The pink configurations are in Conf +\U1 and Conf +\U2,
respectively. While computing U1, the green configurations (s4, 63) and (s4, 69) take the primitive
path π = s4, s7, s8, s9, s10 to U0. In all other pink configurations in s4-chains, although enabled, the
path π either hits a guard or ends in (s10, z) ∈ Conf + \ U1.

which, as noted above, is equal to Conf∞.219

I Remark 8. By definition, a shortest run from a configuration (q, z) ∈ U ′n+1 \ Un to Un has220

no internal configurations in Conf +, and is therefore primitive.221

I Example 9. Figure 3 indicates the set U0 for the running example. Note that U0 contains222

all trivial residue classes. Observe that U ′0 = {(s4, 63), (s4, 69)}; see Figure 4a. These two223

configurations belong to two distinct chains. The downward closure of {(s4, 63)} in its chain224

is {s4} × {54, 63}, and the downward closure of {(s4, 69)} in its chain is {s4} × {60, 69}. We225

have that U1 = U0 ∪ ({s4} × {54, 60, 63, 69}). The second iteration to compute U2 only adds226

the configuration (s1, 12) to U1; see Figure 4b. The sequence stabilizes in this iteration.227

3.3 The Structure of Conf ∞228

In this section we analyze the structure of Conf∞, based on its inductive characterization.229

This analysis will be key in obtaining a polynomial-time algorithm to compute Conf∞.230

The guiding intuition is that for all n the set Un is almost upward closed in each residue231

class R. By this we mean that if (q, z) is the least configuration in R ∩ Un, then all but232

polynomially many configurations of R above (q, z) are also in Un. More specifically, we233

show that for any bounded chain C in R that lies above (q, z), although the number of234

configurations in C may be exponential in |Q|, the size of C \Un is bounded by a polynomial235

in |Q|. (Note here that the unique unbounded chain in R is contained in U0 and hence is236

contained in Un for all n ∈ N.) Using this observation, we provide a polynomial bound on the237

number of iterations until the inductive construction converges. Indeed, in every iteration,238

unless a fixed point has been reached, there must exist some bounded chain C such that the239

size of C \ Un strictly decreases. After showing that C \ Un is of polynomial size, we obtain240

a polynomial bound on the number of iterations until Un converges by Remark 6.241

We start by characterizing the paths between chains.242

CVIT 2016
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I Proposition 10. Let (q, z), (q′, z′) ∈ Conf + and let (q, z) π→ (q′, z′) be a (not necessarily243

valid) run such that π is a primitive path. Then there exists a run (q, z) π′

→ (q′, z′′) of length244

at most |Q|2 + 2 such that245

1. pmin(π′) ≥ pmin(π),246

2. z′′ ≥ z′, and247

3. the q′-residue class of (q′, z′′) is either trivial or identical to that of (q′, z′).248

Given a q-residue class R, in general Un is not an upward closed subset of R. The249

following definitions are intended to measure the defect of Un in this regard.250

We say that a bounded chain C that is contained in a residue class R is n-active if251

there exists a configuration in Un ∩ R that lies below some configuration in C. Let C be252

an n-active chain. Recall that Un is downward closed in C and hence C \ Un is upward253

closed in C. Suppose that C \ Un is non-empty, write m1 := min{x : (q, x) ∈ C \ Un} and254

m2 := max{x : (q, x) ∈ C \ Un}, and define255

δn(C) := {(q, x) ∈ Conf + : m1 ≤ x ≤ m2 and (q, x) 6∈ Un}.256

Thus δn(C) contains all configurations in C \ Un, as well as all configurations “between”257

elements of C \Un, apart from those that are themselves in Un. If C \Un = ∅ then we define258

δn(C) := ∅. Finally for a residue class R we write259

δn(R) :=
⋃
{δn(C) : C ⊆ R an n-active chain} . (1)260

261

For (q, xmin) the least element in R∩Un we have that |{(q, x) ∈ R\Un : xmin ≤ x}| ≤ |δn(R)|.262

I Example 11. In Figure 4a consider the chain C := {s4}×{54, 63, 72, 81}, which is 1-active263

as (s4, 54) ∈ U1. Since C \U1 = {s4} × {72, 81} we have that δ1(C) = {s4} × {72, 75, 78, 81}.264

I Lemma 12. For all n ∈ N and every chain C we have that |δn(C)| ≤ |Q| · |C \ Un|.265

We now come to the central technical part of the paper, controlling the growth of δn(R)266

as a function of n:267

I Lemma 13. There exists a polynomial poly2 such that for each residue class R and all268

n ∈ N we have |δn+1(R)| ≤ max{|δn(R′)| : R′ a residue class}+ poly2(|Q|) if R contains a269

chain that is (n+ 1)-active but not n-active.270

Before proceeding to prove Lemma 13, we demonstrate the underlying intuition. Consider271

a configuration (q, z) ∈ R ∩U ′n+1 that has a primitive path π to a configuration (q′, z′) ∈ Un.272

To prove Lemma 13, we argue that π lifts to a valid run from a “dense” subset of configurations273

in {(q, z′′) ∈ R : z′′ ≥ z}. There are two main cases in this argument based on whether one274

of the larger configurations in the chain induces a valid run ending in a trivial residue class.275

I Example 14. The first case occurs in obtaining U1 from U0 in the running exam-276

ple; see Figure 4a. Consider the chain C := {s4} × {54, 63, 72, 81}. The primitive277

path s4, s7, s8, s9, s10 from the largest configuration (s4, 81) in C leads to a non-trivial278

s10-residue class (out of U0). However, one among the n-next largest configurations in C,279

for n = |blocked(s4, s7, s8, s9, s10)| · |Q|, lifts to a valid run to a trivial s10-residue class. In280

the example, this is the case for (s4, 63). The second case occurs in obtaining U2 from U1 in281

the running example; see Figure 4b. Consider the chain C ′ := {s1} × {12, 18, 24, · · · , 54}.282

The primitive path s1, s3, s4, from none of the configurations in this chain, ends in a283

trivial s4-residue class. However, we provide a subtle argument to bound |C ′ \ U2| with284

|δ1(C)|+ poly2(|Q|).285
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Proof of Lemma 13. Pick the minimal element (q, z0) ∈ R ∩ U ′n+1. Moreover, let (q′, z′) ∈286

Un and (q, z0) π→ (q′, z′) be such that π is a shortest run from (q, z0) to Un. By Remark 8,287

π is a primitive path. By Proposition 10 there is a run (q, z0) π′

→ (q′, z′′), for some z′′ ≥ z′,288

such that π′ has length at most |Q|2 + 2, and the residue class R′ of (q′, z′′) is either trivial289

or the same as the residue class of (q′, z′).290

Note that we do not claim that (q′, z′′) ∈ Un, nor that π′ lifts to a valid run. In what291

follows we will argue that if there are more than some polynomial number of configurations292

above (q, z0) in C \U ′n+1, where C is an (n+ 1)-active chain of R, then π′ does lift to a valid293

run from one of them. Moreover, the run leads to some configuration in the same residue294

class as (q′, z′) or to a trivial residue class. Observe that, intuitively, this means we “pump”295

γq before taking π′ so if we wanted to reach the same residue class as (q′, z′) we would need296

some nonnegative integer c such that297

z0 +Wq · c+ weight(π′) ≡ z0 + weight(π′) (mod Wq′) .298

Based on this intuition, we now identify two cases according to the order of Wq in the299

group Z/ZWq′ of integers modulo Wq′ , which is Wq′

gcd(Wq,Wq′ ) . Recall that this quantity is the300

smallest integer c ≥ 1 such that Wq · c ≡ 0 (mod Wq′).301

Case (i): Wq′

gcd(Wq,Wq′ ) > |Q|. We first show that |C \ Un+1| ≤ (|Q|2 + 2)(|Q|+ 1) for every302

(n+ 1)-active chain C in R.303

Let C be an (n+ 1)-active chain of R and suppose for a contradiction that |C \ Un+1| >304

(|Q|2 + 2)(|Q|+ 1). Since C is (n+ 1)-active, for every configuration (q, z) ∈ C \ Un+1 we305

have z ≥ z0. Further, since pmin(π′) + z0 ≥ 0, π′ can only be blocked on a configuration due306

to a violation of a disequality guard. Since the length of π′ is at most |Q|2 + 2, it follows307

that at most |Q|2 + 2 elements of C \ Un+1 lie in {q} × blocked(π′).308

Recall that C \ Un+1 is upward closed in C, so by the assumption that |C \ Un+1| >309

(|Q|2 +2)(|Q|+1), there exists a set S := {(q, z1 + iWq) : 0 ≤ i ≤ |Q|} of |Q|+1 “consecutive”310

elements of C \Un+1, for some z1, such that no element of S lies in {q} × blocked(π′). Then311

π′ lifts to a valid run from each element of S. Moreover, since the order of Wq in Z/ZWq′312

is assumed to be greater than |Q|, the images of the elements of S, after following π′, lie313

in pairwise distinct q′-residue classes. But the number of non-trivial q′-residue classes is at314

most |Q| and hence some configuration in S has a run over π′ to a trivial q′-residue class315

and hence to Un. But then such a configuration lies in Un+1, which is a contradiction.316

We conclude that |C \ Un+1| ≤ (|Q|2 + 2)(|Q| + 1) for every (n + 1)-active chain C in317

R. But then |δn+1(C)| ≤ |Q|(|Q|2 + 2)(|Q|+ 1) by Lemma 12. Finally, since R comprises at318

most 2|Q| bounded chains by Remark 6, we have that |δn+1(R)| ≤ 2|Q|2(|Q|2 + 2)(|Q|+ 1).319

320

Case (ii): Wq′

gcd(Wq,Wq′ ) ≤ |Q|. For the residue classes R and R′ as above, define an injective321

partial mapping Φ : δn+1(R)→ δn(R′) by Φ(q, x) = (q′, x′) if and only if x′ = x+ weight(π′)322

and (q′, x′) ∈ δn(R′). We will prove that Φ is defined on all but poly3(|Q|) many configurations323

in δn+1(R), for some polynomial poly3, thereby showing that |δn+1(R)| ≤ |δn(R′)|+poly3(|Q|).324

To this end, it suffices to show that Φ is defined on all but poly4(|Q|) many configurations in325

δn+1(C) for every (n+ 1)-active chain C in R, for some polynomial poly4.326

Let C be an (n+1)-active chain in R and let C1, . . . , Cs be a list, given in increasing order,327

of the chains in R′ that are mapped into by Φ from some configuration in δn+1(C). Then328

C1, . . . , Cs are all n-active (as they are above (q′, z′) ∈ Un). For i ∈ {1, . . . , s}, write (q, x(i)
min)329
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for the minimum configuration in δn+1(C) that is mapped by Φ to Ci and write (q, x(i)
max) for330

the maximum configuration in δn+1(C) that is mapped to Ci. Then for each i = 1, . . . , s,331

every configuration (q, x) ∈ δn+1(C) such that x(i)
min ≤ x ≤ x

(i)
max and x 6∈ ×blocked(π′) is332

mapped by Φ to δn(R′). Thus, writing (q, xmax) and (q, xmin) respectively for maximum and333

minimum configurations in δn+1(C), we have that Φ is defined on all non-blocked elements334

of δn+1(C) lying outside the set below.335 {
(q, x) ∈ δn+1(C)

∣∣∣∣∣ x ∈ (x(s)
max, xmax

]
∪
[
xmin, x

(1)
min

)
∪
s−1⋃
i=1

(
x(i)

max, x
(i+1)
min

)}
(2)336

Since blocked(π′) contains at most |Q|2 + 2 elements, it remains to prove that the set (2)337

has polynomial cardinality. We claim its size is at most (2|Q| + 1) · poly5(|Q|), for some338

polynomial poly5. For this it will suffice to show that any sub-interval I of δn+1(C) of the339

form {(q, x) ∈ δn+1(C) : a ≤ x ≤ b}, where a, b ≥ xmin, and such that it does not meet the340

domain of Φ, has cardinality at most poly5(|Q|). (Indeed, note that (2) is a union of at most341

2|Q|+ 1 such intervals since there are at most 2|Q| chains in R by Remark 6.)342

Let poly6(x) := (x2 + 2)(x+ 1) + 1. Since blocked(π′) has cardinality at most |Q|2 + 2, if343

we take poly6(|Q|) consecutive elements of C \Un+1 then there are at least |Q|+1 consecutive344

elements that lie outside {q}×blocked(π′) and at least one of these elements—say (q, x)—has345

a valid run over π′ to the residue class R′ by the assumption that Wq′

gcd(Wq,Wq′ ) ≤ |Q|. Since346

(q, x) 6∈ Un+1 we have that (q′, x+ weight(π′)) 6∈ Un and hence (q, x) is in the domain of Φ.347

We conclude that any sequence of at least poly6(|Q|) consecutive elements of C \Un+1 meets348

the domain of Φ. Hence any sub-interval I, as defined above, contains at most poly6(|Q|)349

elements of C \ Un+1 and, by Lemma 12, contains at most |Q| · poly6(|Q|) elements in350

total. J351

Proposition 15 follows from Lemma 13 by induction, as follows.352

I Proposition 15. There exists a polynomial poly1 such that for each residue class R and353

all n ∈ N we have |δn(R)| ≤ poly1(|Q|).354

Proof. Let αn be the number of chains in Conf + that are n-active. Since n-active chains355

are by definition bounded, we have that αn ≤ 2|Q|2 for all n ∈ N (see Remark 6). We argue356

by induction on n that |δn(R)| ≤ αn · poly2(|Q|) for all n ∈ N and all residue classes R. We357

conclude that |δn(R)| ≤ 2|Q|2 · poly2(|Q|).358

The base case is trivial as there are no 0-active chains and δ0(R) is empty for all359

residue classes. The induction step has two cases. First, suppose that αn+1 = αn, i.e., all360

chains in Conf + that are (n+ 1)-active were already n-active. Since Un ⊆ Un+1, we have361

that δn+1(C) ⊆ δn(C) for all chains C in R. We conclude that δn+1(R) ⊆ δn(R) and so362

|δn+1(R)| ≤ |δn(R)|. Since |δn(R)| ≤ αn ·poly2(|Q|) by induction hypothesis, and αn = αn+1363

we get that |δn+1(R)| ≤ αn+1 · poly2(|Q|).364

The second case is that αn+1 > αn. Then by Lemma 13 we have |δn+1(R)| ≤ max{|δn(R′)| :365

R′ a residue class} + poly2(|Q|). Since the right-hand side of the latter is at most ≤366

αn ·poly2(|Q|)+poly2(|Q|), by induction hypothesis, and αn+1 > αn we get that |δn+1(R)| ≤367

αn+1 · poly2(|Q|). J368

As a consequence of Proposition 15 we have:369

I Corollary 16. The sequence (Un)n∈N stabilizes in at most poly1(|Q|) steps.370
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3.4 Computing Conf ∞ and Deciding Unboundedness371

In this section we show how to compute Conf∞ in polynomial time and how to decide in372

polynomial time whether the initial configuration (s, 0) can reach Conf∞.373

We start by showing that if a configuration can reach Un via a primitive run, then it can374

also reach Un via a polynomial-length run (see Appendix G for the proof).375

I Proposition 17. There exists a polynomial poly7 such that the following holds. Let376

(q, z), (q′, z′) ∈ Conf + and let (q, z) π→ (q′, z′) be a valid run such that (q′, z′) ∈ Un and π377

is primitive. Then there is a valid run (q, z) π′

→ (q′, z′′) such that (q′, z′′) ∈ Un and π′ has378

length at most poly7(|Q|).379

Recall that U ′n+1 consists of all configurations in Conf + with minimal distance to Un.380

Combining Remark 8 and Proposition 17, we have that the minimal distance from a con-381

figuration (q, z) ∈ U ′n+1 \ Un to Un is at most poly7(|Q|). It follows that we can restrict382

the search for configurations that can reach Un, to those within a polynomially-bounded383

distance to Un. By itself this is not sufficient to obtain a polynomial-time algorithm to decide384

whether Un is reachable. However, using our analysis of the structure of Un in Section 3.3,385

we are able to formulate the bounded reachability problem above in a form that admits a386

polynomial-time algorithm.387

Specifically, we consider the Bounded Coverability problem with a Disequality Objective:388

Given as input a 1-VASS V = (Q,D,∆, w) with a distinguished state qf , a positive integer L389

(written in unary), an initial configuration (q0, x0), and a coverability objective of the form390

O =
{

(qf , x) | x ≥ ` ∧
m∧
i=1

(x 6≡ ai mod W ) ∧
n∧
i=1

(x 6= bi)
}
, (3)391

392

where `,W and the ai and bi are non-negative integers given in binary, decide whether O is393

reachable from (q0, x0) via a valid run of length at most L.394

I Proposition 18. The Bounded Coverability problem with a Disequality Objective is decidable395

in polynomial time.396

We now show how to compute Conf∞ in polynomial time. By Corollary 16, the se-397

quence {Un}n∈N converges in at most poly1(|Q|) steps. It remains to show how to com-398

pute Un+1 from Un in polynomial time for each n.399

Recall that all unbounded chains are contained in U0 and hence are contained in Un for400

all n. Recall also that the total number of bounded chains is at most 2|Q| and that Un is401

downward closed in each bounded chain. Thus Un is determined by giving, for every bounded402

chain C such that Un ∩ C 6= ∅, the maximum configuration in Un ∩ C. In particular, Un can403

be described in space polynomial in the description of the given 1-VASS.404

Recall that Un+1 is obtained from Un by adding the configurations in Conf+\Un that have405

minimum distance to Un and then closing downward in each bounded chain. By Remark 8406

and Proposition 17, a configuration in Conf+ \ Un that has minimum distance to Un has407

distance at most poly7(|Q|). The idea to compute Un+1 from Un is as follows:408

For each bounded chain C, and each configuration (q, x) ∈ C \ Un that is among the top409

poly1(|Q|) configurations in C, we determine the distance of (q, x) to Un up to a bound of410

poly7(|Q|). To do this we use the procedure described in Proposition 18, having first written411

Un as a polynomial-size union of sets of the form (3)—see below for details. The reason that412

it suffices to look only among the top poly1(|Q|) configurations in each bounded chain is413
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because we know from Proposition 15 that |C \ Un+1| ≤ poly1(|Q|) for every (n+ 1)-active414

chain C.415

We next show how to decompose Un into a polynomial union of sets of the form (3) in416

order to apply Proposition 18. Fixing q ∈ Q+, let R1, . . . , Rm be a list of the non-trivial q-417

residue classes and for each i ∈ {1, . . . ,m}, write ai for the corresponding residue modulo Wq418

and define `i := min(Ri ∩ Un). Moreover, let b1, . . . , bk be a list of the counter values x such419

that x ≥ `i and (q, x) ∈ Ri \ Un for some i. Note that m ≤ |Q| and k ≤ m poly1(|Q|). We420

decompose the set of configurations {(q, z) ∈ Un} into the following two components:421

1. {(q, z) : z ≥ pmin(γq)∧
∧m
i=1 z 6≡ ai (mod Wq)}, i.e., all configurations in trivial q-residue422

classes,423

2. for all j ∈ {1, . . . ,m}, the set {(q, z) : z ≥ `j ∧
∧
i:i 6=j z 6≡ ai (mod Wq) ∧

∧k
i=1 z 6= bi},424

which includes Rj ∩ Un for the non-trivial residue class Rj .425

Finally, it remains to decide whether the configuration (s, 0) is unbounded. By Proposi-426

tion 4, (s, 0) is unbounded if and only if it can reach Conf∞. Now a shortest run from (s, 0)427

to Conf∞ is necessarily primitive: if an internal configuration in such a run lies in Conf +428

then it is also in Conf∞—a contradiction. By Proposition 17, a shortest run from (s, 0)429

to Conf∞ has length at most poly7(|Q|). Thus we can decide whether such a run exists in430

polynomial time using Proposition 18. In conclusion we have431

I Theorem 19. The Unboundedness Problem and the Coverability Problem for 1-VASS with432

disequality tests are decidable in polynomial time.433

4 Unboundedness for 1-VASS434

In this section we show that the Unboundedness Problem for 1-VASS (i.e., with no disequality435

tests) is in NC2. Recall that NCi is the class of decision problems solvable in time O(logi n),436

with n the size of the input, on a parallel computer with a polynomial number of processors [13,437

1].438

Let V = (Q,∆, w) be a 1-VASS with a distinguished state s ∈ Q. We want to decide439

whether the configuration (s, 0) is unbounded. Since V has no disequality tests, deleting a440

negative-weight or zero-weight cycle that appears as an infix of a valid run yields another441

valid run. It follows that (s, 0) is unbounded if and only if there is a valid run from (s, 0)442

consisting of a simple path (of length at most |Q|) followed by a positive-weight simple cycle443

(again, of length at most |Q|). We call such a run a lasso.444

Let V = (Q,∆, w) be a 1-VASS and let π = q1, . . . , qn be a path in V. Recall that a445

(possibly empty) prefix of π is said to be minimal if it has minimal weight among all prefixes446

of π. Likewise a (possibly empty) suffix of π is said to be maximal if it has maximal weight447

among all suffixes. It is clear that q1, . . . , qm is a minimal prefix of π if and only if qm, . . . , qn448

is a maximal suffix. In such a case let us call qm a nadir of π (the nadir is the lowest point449

reached in any run over π). Recall that pmin(π) is the weight of a minimal prefix of π;450

correspondingly we define smax(π) to be the weight of a maximal suffix.451

Given paths π and π′, say that π is dominated by π′ if pmin(π) ≤ pmin(π′) and452

smax(π) ≤ smax(π′). Observe that if π is dominated by π′ then weight(π) ≤ weight(π′).453

I Example 20. In Figure 5, the path s0, s1, s4 dominates s0, s2, s4. However, despite it being454

the case that weight(s0, s3, s4) > weight(s0, s2, s4), s0, s3, s4 does not dominate s0, s2, s4455

since the weight of a minimal prefix of the former is smaller than that of the latter.456

Fix two states p, q ∈ Q and let P be a set of p-q paths. We say that a set P ′ of p-q paths is457

a Pareto set for P if for every π ∈ P there exists π′ ∈ P ′ such that π is dominated by π′.458
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s0 s2

s1

s3

s4

−2

−3

−4

3

3

6

Figure 5 The topmost path dominates the middle one; the bottom path dominates no other path

We observe some simple properties of Pareto sets:459

I Lemma 21. Let p, q, r ∈ Q. Then all of the following statements hold:460

1. If P1, P2, P3 are sets of p-q paths such that P1 is a Pareto set of P2 and P2 is a Pareto461

set of P3, then P1 is a Pareto set of P3.462

2. If P,R are sets of p-q paths with respective Pareto sets P ′, R′, then P ′ ∪R′ is a Pareto463

set for P ∪R464

3. If P is a set of p-q paths and R is a set of q-r paths with respective Pareto sets P ′, R′,465

then P ′ ·R′ is a Pareto set of P ·R.466

I Proposition 22. Let p, q ∈ Q. Then every set P of p-q paths of length at most k has a467

Pareto set P ′ of cardinality at most |Q| such that each path in P ′ has length at most 2k.468

Moreover such a set P ′ can be computed from P in NC1.469

An NC2 Upper Bound470

I Theorem 23. The Unboundedness Problem and the Coverability Problem for 1-VASS are471

decidable in NC2.472

Proof. By Lemma 1, it will suffice to show that Unboundedness is in NC2.473

Let V = (Q,∆, w) be a 1-VASS. Given p, q ∈ Q and m ∈ N, denote by Pathsp,q,m the set474

of all p-q paths in V of length at most m.475

Given a state s ∈ Q, recall that (s, 0) is unbounded if and only if there exists a lasso run476

that starts at (s, 0). To determine the existence of such a run we compute a Pareto set Pq477

for Pathss,q,|Q| and a Pareto set P ′q for Pathsq,q,|Q| for every state q ∈ Q. Having done this478

we look for q ∈ Q and paths π ∈ Pq and π′ ∈ P ′q such that π · π′ induces a valid run from479

(s, 0) and π′ has positive weight.480

It remains to show how to compute a Pareto set of Pathsp,q,|Q| for all pairs of states p, q ∈ Q481

(together with the values weight(π) and pmin(π) for every path π in the Pareto set) in NC2.482

For k = 1, . . . , dlog |Q|e, we show how to compute a family Pk = {Pp,q,k}p,q∈Q such that483

for all p, q ∈ Q:484

1. Pp,q,k is a Pareto set for Pathsp,q,2k ;485

2. Pp,q,k ⊆ Pathsp,q,4k ;486

3. |Pp,q,k| ≤ |Q|.487

By Item 1, if k = dlog |Q|e then Pp,q,k is a Pareto set for Pathsp,q,|Q|. (Note that for488

k = dlog |Q|e, Pk consists of paths of length at most |Q|2.)489

The construction of Pk is by induction on k. Suppose we have computed Pk with490

Properties 1-3 above. Fix p, q ∈ Q. In order to compute Pp,q,k+1 we observe that491

P := {π1 · π2 : ∃r ∈ Q(π1 ∈ Pp,r,k ∧ π2 ∈ Pr,q,k)} (4)492

is a Pareto set for Pathsp,q,2k+1 by Items 2 and 3 of Lemma 21. Applying Proposition 22,493

we obtain a Pareto set P ′ for P of cardinality at most |Q|. By Item 1 of Lemma 21, P ′ is a494
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Pareto set for Pathsp,q,2k+1 . Finally, it is clear from the length bound in Proposition 22 that495

all paths in P ′ have length at most 4k+1. Thus we define Pp,q,k+1 := P ′.496

It remains to establish the NC2 complexity bound for computing Pdlog |Q|e. For this it497

suffices to show that for all k the computation of Pk+1 from Pk can be carried out in NC1.498

But we may compute each set Pp,q,k+1 in parallel (over p, q ∈ Q), and the computation of499

each such set can be done in NC1 by Proposition 22. J500

5 Conclusion501

We have shown that control-state reachability for 1-VASS with disequality tests can be solved502

in polynomial time. The complexity of reaching a given configuration in this model is open503

(being equivalent to control-state reachability in the presence of both equality and disequality504

tests), lying between NP and PSPACE. For multi-dimensional VASS with disequality tests,505

the classical argument of Rackoff [14] easily generalises to show that control-state reachability506

remains in EXPSPACE. By contrast, decidability of reachability is open to the best of our507

knowledge. For comparison, recall that without disequality tests reachability is decidable508

but non-elementary [4].509
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A Proof of the reduction in Figure 1553

Let us recall that for every value u ∈ N, the assignment valu : {X1, . . . , Xm} → {0, 1} is554

defined by valu(Xi) = 1 if and only if pi | u. For convenience, define the domain Ds ⊆ N555

containing all allowable counter values in state s (exclude all disequality guards on s).556

The key observation is the following: let u ∈ {0, . . . , P − 1}, and consider a clause557

Ci = `i1 ∨ `i2 ∨ `i3 , where `ij is a literal of variable Xij , then valu satisfies Ci iff there exists558

some k ∈ N such that u+ kpi1pi2pi3 /∈ Di.559

Indeed, note that for every j ∈ {1, 2, 3} and every k ∈ N we have that pij |u iff pij |u +560

kpi1pi2pi3 . Recall that valu(Xij ) = 1 iff pij |u, and observe that since u < P , there exists561

k ∈ N such that u+ kpi1pi2pi3 ∈ {P, P + 1, . . . , P + pi1pi2pi3 − 1}. We thus have that valu562

satisfies Ci iff valu+kpi1pi2pi3
satisfies Ci, iff u+ kpi1pi2pi3 /∈ Di.563

Now, assume ϕ is satisfiable, and let π be a satisfying assignment. We associate with π564

the number u =
∏
j:π(Xj)=1 pj (mod P ) (note that taking modulo P simply means that if565

the product is exactly P , we take u = 0). Clearly π = valu. We claim that (s0, u) is bounded.566

Indeed, the only paths possible from (s0, u) start by choosing a state si, and then repeatedly567

applying the cycle of cost ci. However, since valu satisfies all clauses, then by the above, all568

such paths are blocked by a disequality guard after taking the ci for k times, for some k ∈ N569

(which depends on i). Thus, (s0, u) is bounded.570

Conversely, assume (s0, u) is bounded for some value u, we claim that valu satisfies ϕ.571

Indeed, by the same reasoning above, it follows that for every cycle of cost ci, we have572

u+ kci /∈ Di for some k ∈ N, so valu satisfies Ci. Since this is true for all clauses, we have573

that valu satisfies ϕ.574

We conclude that ϕ is satisfiable iff some configuration (s0, u) is bounded, which completes575

the reduction.576

Finally, we note that the reduction indeed takes polynomial time — indeed, the construc-577

tion clearly has polynomially many states. Also, the first m primes p1, . . . , pm can be listed578

in time polynomial in m, and are representable in polynomially many bits. Therefore, the579

binary representation of the transition values and the amount of missing elements in the580

domain of each state are both polynomial.581

B Single disequality guards suffice582

Given a 1-VASS V = (Q,∆, D,w) with disequality tests, we can assume that for all states q583

the set Dq is either N or N\{g} for some g ∈ N. This assumption is without loss of generality,584

as a state q with Dq = N \ {a1, . . . , an} can be replaced with a sequence of new states585

q1, · · · , qn, connected with 0-weight transitions, such that Dqi = N \ {ai} for i ∈ {1, . . . , n}.586

The transformation yields only a polynomial blow-up in the size of the 1-VASS, and there is587

a natural correspondence between runs in the original 1-VASS and the modified one.588

C Proof of Lemma 1589

Consider a 1-VASS V = (Q,∆, D,w) with disequality tests, and let s, t ∈ Q. We reduce the590

Coverability problem to the Unboundedness problem as follows.591

We obtain from V a new 1-VASS V ′ as follows. First, we remove from V all the states592

that cannot reach t in the underlying graph. Second, we introduce a new state t′ with a593

self-loop of weight +1, that is reachable from t with a transition of weight 0. The output of594

the reduction is V ′ with the distinguished state s.595



S. Almagor, N. Cohen, G. A. Pérez, M. Shirmohammadi and J. Worrell 23:17

Recall that reachability in directed graphs can be decided in NL ⊆ NC2, and hence this596

reduction is NC2-computable.597

Henceforth assume that s can reach t in the underlying graph of V (otherwise s cannot598

cover t, and the reduction can output a trivial negative instance). We proceed to prove the599

correctness of the reduction.600

First, if (s, 0) can cover t in V, then in particular it can only cover t using states in V ′.601

We now have that (s, 0) is unbounded in V ′, by covering t, and then taking the transition602

to t′ and repeating the self loop unboundedly. Note that crucially, there are no disequality603

guards on t′, and therefore once t is reached, we can take the transition to t and repeat the604

self loop unboundedly.605

Conversely, suppose (s, 0) is unbounded in V ′, then either there is a valid run in V from606

(s, 0) to (t′, z) for some z, in which case (s, 0) can cover t in V , or (s, 0) is unbounded already607

in V and, moreover, it is unbounded in V using only states that can reach t in the underlying608

graph. We claim that in the latter case, (s, 0) can cover t in V . Indeed, from (s, 0) there is a609

valid run to a configuration (q, z) with z that is large enough, such that a simple path from q610

to t in the underlying graph lifts to a valid run from (q, z) to (t, z′) for some z′. Specifically,611

taking z > |Q| ·W ·G where W is the maximal absolute value of the weight of a transition612

in V, and G is the maximal disequality guard, suffices for such a run.613

D Proof of Proposition 4614

Clearly if (s, 0) can reach an unbounded configuration in Conf + then it is unbounded.615

Conversely, if (s, 0) is unbounded, then there is a state q such that for all z0 ∈ N, there616

exist z, z′ ≥ z0 and a valid run π starting in (s, 0) that visits (q, z) and ends in (q, z′). Thus,617

there is a positive cycle γ on q. The positive cycle γ on q may not be simple, but it certainly618

visits a state p with a simple positive cycle γp on it. Pick z0 such that z0 > pmin(γ) + x.619

for all x ∈ blocked(γωp ) (Note that blocked(γωp ) is finite since γp is a positive cycle. The620

maximum is thus well-defined.) Hence, there is a valid run from (s, 0) to (p, y) where621

y > max(blocked(γωp )). Observe that (p, y) ∈ Conf + and it is unbounded.622

E Proof of Proposition 10623

Suppose that π has length strictly greater than |Q|2 + 2. Then we can find |Q|+ 1 distinct624

proper prefixes (i.e. prefixes that are not just the initial state, or the entire path) of π that625

end in the same state. That is, |Q| proper cycles on the same state. Let π1, . . . , π|Q|+1 be a626

list of these prefixes, given in order of increasing length, and let the corresponding suffixes627

be π′1, . . . , π′|Q|+1. We now consider two cases.628

First, suppose that there exist i < j such that weight(πi) and weight(πj) have the same629

residue modulo Wq′ . Then define π′ := πi · π′j . In this case path π′ lifts to a run from (q, z)630

to (q′, z′′) such that (q′, z′′) lies in the same q′-residue class as (q′, z′′). The second case631

is that the respective residue classes of weight(π1), . . . ,weight(π|Q|+1) modulo Wq′ are all632

distinct. Then there exists i > 1 such that, defining π′ := π1 · π′i, the path π′ lifts to a run633

from (q, z) to (q′, z′′) such that (q′, z′′) lies in a trivial q′-residue class (as there are at most634

|Q| non-trivial residue classes).635

Continuing in this fashion we can recursively remove cycles from the original path π to636

eventually obtain a path π′ that has length at most |Q|2 + 2 and such that Item 3 is satisfied.637

Consider all maximal infixes that were removed from π to obtain π′. Note that each such638
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infix must necessarily be a cycle as they arise from iteratively removing cycles. Since π was639

primitive, all of them must have non-positive weight. Hence, Items 1 and 2 also hold2.640

F Proof of Lemma 12641

Consider two “consecutive” configurations (q, z), (q, z+Wq) ∈ C \Un, then all configurations642

(q, z′) for z ≤ z′ < z +Wq lie in pairwise-distinct q-residue classes. In particular, since there643

are at most |Q| non-trivial residue classes, and since trivial residue classes are contained in644

U0, we have that at most |Q| such elements are in δn(C).645

G Proof of Proposition 17646

By Proposition 15 we can find a polynomial poly′7 such that647

poly′7(|Q|) ≥ |Q|2 + |Q|+ 3 +
∑

R non-trivial
|δn(R)| (5)648

649

for all n ∈ N.650

Set poly7(|Q|) := |Q| · (poly′7(|Q|))2 + |Q|2 + 4, and consider a valid, primitive path π651

such that length(π) > poly7(|Q|) and (q, z) π→ (q′, z′).652

Since π has length greater than |Q|·(poly′7(|Q|))2+2, there exists a state q′′ ∈ Q that occurs653

at least (poly′7(|Q|))2 times in internal configurations within the first |Q| · (poly′7(|Q|))2 + 2654

configurations of π. Thus, there exists a sequence of proper prefixes π1 < . . . < πpoly′
7(|Q|) of655

π that all end in q′′ and such that one of the following two cases holds.656

(i) The numbers weight(πi) all have the same residue modulo Wq′ .657

(ii) The numbers weight(πi) have pairwise distinct residues modulo Wq′ .658

Indeed, since there are (poly′7(|Q|))2 prefixes to choose from, either Case (i) holds, or there659

are strictly less than poly′7(|Q|) prefixes per residue class. If the latter holds then there must660

be least poly′7(|Q|) such distinct residue classes, so Case (ii) holds.661

In either case, we decompose the computation π as π = πpoly′
7(|Q|) ·π′. Observe that since662

π is primitive, then so is π′. Applying Proposition 10 to π′ we obtain a path π′′ of length at663

most |Q|2 + 1 such that πpoly′
7(|Q|) · π′′ leads from (q, x) to either the same residue class as664

(q′, z′) or to a trivial q′-residue class.665

It is important to note that we cannot assume π′′ is not blocked after the prefix πpoly′
7(|Q|).666

However, since |blocked(π′′)| ≤ |Q|2, we can remove from the list of prefixes at most |Q|2667

prefixes such that the remaining prefixes do not cause π′′ to block. (Indeed, we will not668

modify the path by literally removing prefixes but rather cycles which correspond to the path669

from a prefix to a longer prefix. For now, we are only speaking about removing elements670

from the collection of prefixes we can choose from.) W.l.o.g, let π1, . . . πd be the remaining671

prefixes.672

Consider the family of paths θi := πi · π′′ for i ∈ {1, . . . , d}. Note that every θi is of673

length at most poly7(|Q|), and since the θi are obtained by removing q′′-cycles, and since π674

is primitive, the configurations reached by θi are above (q′, z′). We claim that one of the θi675

is a valid run from (q, z) to Un.676

We separate the analysis according to the cases above.677

2 Note that we do not claim that the intermediate paths obtained in the procedure are primitive nor
that the individual cycles removed in this process are negative. Rather the observation is that π′ can
equivalently be obtained from π in one step by simultaneously removing a disjoint family of infixes,
where each infix is a cycle (necessarily non-positive).
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In Case (i), if π′′ leads to a trivial residue class, then all the θi reach Un, and we are678

done. Otherwise, π′′ leads to the same residue class as (q′, z′). By our choice of poly′7(|Q|)679

in (5), we have that d >
∑
R non-trivial |δn(R)|. That is, there are more prefixes that do680

not cause π′′ to block than there are missing elements above (q′, z′) in Un. We conclude681

that some θi reaches Un.682

In Case (ii), the paths θi all reach distinct residue classes. In particular, since there are683

more than |Q| such prefixes — i.e. d > |Q| by our choice of poly′7(|Q|) — then some θi684

reach trivial residue classes, and thus reach Un.685

H Proof of Proposition 18686

We carry out a forward reachability analysis starting from the initial configuration (q0, x0).687

The algorithm runs for L + 1 rounds. In the k-th round, we maintain for each state q a688

set Sq,k of configurations (q, x) that are reachable from (q0, x0) by valid runs of length k. Let689

Rq,k denote the set of all configurations (q, x) that are reachable from (q0, x0) by valid runs690

of length k. We maintain the invariant that if some configuration (q, x) ∈ Rq,k can reach691

the objective O in L− k steps via a path π then some configuration (q, x′) ∈ Sq,k can also692

reach O via the same path π. We output that the objective is reachable if and only if one of693

the sets Sqf ,k for some k ∈ {0, . . . , L} intersects O. This last step is clearly sound, given the694

invariant.695

The key to obtaining a polynomial-time runtime bound is to suitably prune the sets Sq,k696

to keep them of polynomial size. In order to compute {Sq,k+1}q∈Q from {Sq,k}q∈Q we proceed697

as follows. First define {S′q,k}q∈Q to be the indexed set of all valid configurations reachable698

in one step from {Sq,k}q∈Q. Now we obtain Sq,k+1 from S′q,k by the following two steps:699

First, we delete from S′q,k all configurations (q, x) such that there are (n+ L) configura-700

tions (q, x′) in S′q,k with x′ > x and x′ ≡ x (mod W ).701

Secondly, we delete from S′q,k all configurations (q, x) such that there are (n+ L)(m+ 1)702

configurations (q, x′) in S′q,k with x′ > x.703

Clearly each set Sq,k has cardinality at most (n + L)(m + 1), and moreover, it can be704

computed from the collection of sets {Sq′,k−1 | q′ ∈ Q} in polynomial time.705

It remains to argue that the invariant is maintained between rounds. To this end, suppose706

some state (q, x) ∈ Rq,k+1 can reach the objective in L−k−1 steps via a path π. Then there707

exists a state (q′, x′) ∈ Rq′,k that can reach the objective in L − k steps via the path q′π.708

By the loop invariant there exists a state (q′, x′′) ∈ Sq′,k that can also reach the objective709

via the path q′π. Hence there is a state (q, y) ∈ S′q′,k that can reach the objective via the710

path π. Now if (q, y) is deleted in the first stage of pruning then there is some configuration711

(q, y′) such that y′ > y, y′ ≡ y (mod W ), and π yields a valid computation from (q, y′) to712

the objective O. After the first stage of pruning, each residue class in S′q,k contains at most713

n+ L elements. Hence if (q, y′) is deleted in the second stage of pruning, there are at least714

n+ L configurations (q, y′′) in Sq,k+1 that are above (q, y′) and are such that the run over π715

from (q, y′) leads to a configuration (qf , z) with
∧m
i=1 z 6≡ ai mod W . Now from one of these716

configurations π yields a valid run that reaches O since one of n+ L choices of (q, y′′) will717

avoid blocked(π) and lead to a configuration (qf , z) such that
∧n
i=1 z 6= bi.718
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I Proof of Lemma 21719

Items 1 and 2 are obvious. Item 3 follows from the fact that if π1 ∈ P is dominated by720

π′1 ∈ P ′ and π2 ∈ R is dominated by π′2 ∈ R′ then π1 · π2 is dominated by π′1 · π′2. Indeed,721

pmin(π1 · π2) = min(pmin(π1),weight(π1) + pmin(π2))722

≤ min(pmin(π′1),weight(π′1) + pmin(π′2))723

= pmin(π′1 · π′2) .724

We can similarly argue that smax(π1 · π2) ≤ smax(π′1 · π′2).725

J Proof of Proposition 22726

Fix a state r ∈ Q. Consider all p-r paths that appear as a minimal prefix of some path in727

P . Pick a single such prefix π1 of maximum weight. Likewise consider all r-q paths that728

appear as a maximal suffix of some path in P and pick a single such suffix π2 of maximum729

weight. Now form the path π := π1 · π2. This path dominates any path in P with nadir r.730

We define P ′ to be the set of paths π formed in this way as r runs through Q. Without loss731

of generality, we will henceforth suppose the absolute weight of all paths in P ′ is at most 2k.732

That is, it can be encoded in binary using k + 1 bits.733

The NC1 bound on computing P ′ relies on the well-known fact that the sum of a list734

of binary integers can be computed in NC1 [16, Chapter 1]. To obtain P ′ we compute the735

weight of each prefix and suffix of every path in P in parallel. According to [16], this can736

be done in time O(log k) on a parallel computer with |P |k processors: one for each element737

of P and each midpoint 0 ≤ m ≤ k. Finally, for each state r ∈ Q in parallel, we find a738

maximum-weight prefix of a path in P that connects p and r and a maximum-weight suffix739

of a path in P that connects r and q. It is straightforward to prove the latter is also in NC1
740

(see Appendix K) thus completing the proof.741

K Computing the maximum of a list of numbers is in NC1
742

We will actually prove that the problem is in AC0. Since AC0 is known to be strictly contained743

in NC1 [1], this is slightly stronger than what we require.744

Let us formalize the problem we focus on and define the complexity class AC0.745

Given n numbers x0, . . . , xn−1 encoded in binary as m-bit strings, the ITMAX problem746

asks to compute the maximum of the given list of numbers in binary.747

The complexity class AC0 consists of all decision problems decidable by a logspace-uniform748

family of Boolean circuits with unbounded fan-in {∧,∨}-gates, polynomial size, and constant749

depth [1]. We will make use of the following equivalent descriptive-complexity definition:750

The class AC0 consists of the set of all languages describable in first-order logic with the751

addition of the BIT predicate [10]. The latter predicate is defined as follows752

BIT(x, i) def⇐⇒ the (i+ 1)-th bit of x is set to 1.753

In the sequel, let 0 be the index of the most significant bit in the binary representation of754

the given integers. That is, the first bit of the binary string is the most significant one.755

I Proposition 24. ITMAX can be computed in AC0.756
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Proof. We proceed by first defining AC0 circuits GEQi,j (or rather first-order logic predicates757

using BIT) that output 1 for the input if and only if xi ≥ xj holds. That is, for all i 6= j we758

define the following.759

GTi,j
def⇐⇒ ∃` ∈ [0,m] : BIT(xi, `) ∧ ¬BIT(xj , `) ∧760

(∀k ∈ [0, `) : BIT(xj , k)↔ BIT(xi, k))761

GEQi,j
def⇐⇒ (∀k ∈ [0,m] : BIT(xi, k)↔ BIT(xj , k)) ∨GTi,j762

763

Then, we make use of those circuits to define new AC0 circuits Mi which recognize whether764

the i-th element xi from the input list of integers is a maximal one765

Mi
def⇐⇒ ∀j ∈ [0,m] : GEQi,j .766

Finally, in order to output a single maximal element, we build an AC0 circuit M ′i , per input767

integer, which outputs 1 if i is the first index such that Mi outputs 1. Concretely, for all768

0 ≤ i ≤ n and all 0 ≤ k ≤ m, we let769

M ′i
def⇐⇒Mi ∧ (∀j ∈ [0, i) : ¬Mj)770

bk
def⇐⇒ ∃i ∈ [0,m] : (M ′i ∧ BIT(xi, k))771

772

where bk is the k-th output bit of the circuit. Since M ′i clearly holds only if M ′j does not773

hold, for all i 6= j, the circuit correctly outputs the binary representation of the first maximal774

element of the given list. J775
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