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We consider one of the weakest variants of cost register automata over a tropical semiring,
namely copyless cost register automata over N with updates using min and increments.
We show that this model can simulate, in some sense, the runs of counter machines
with zero-tests. We deduce that a number of problems pertaining to that model are
undecidable, namely equivalence, upperboundedness, and semilinearity. In particular,
the undecidability of equivalence disproves a conjecture of Alur et al. from 2012. To
emphasize how weak these machines are, we also show that they can be expressed as a
restricted form of linearly-ambiguous weighted automata.

Keywords: Cost register automata; semilinearity; equivalence.

1. Introduction

Cost register automata (CRA) [3] encompass a wealth of computation models for
functions from words to values (herein, integers). In their full generality, a CRA is
simply a DFA equipped with registers that are updated upon taking transitions. The
updates are expressions built using a prescribed set of operations (e.g., +,×,min, . . .),
constants, and the registers themselves.
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In this work, we will focus on CRA computing integer values, where the updates
may only use “+c”, for any constant c, and min. For instance:

r2r2

#,

{
r1 ← r1
r2 ← r2

a,

{
r1 ← 1
r2 ← r2

#,

{
r1 ← 0
r2 ← min{r1, r2}

a,

{
r1 ← r1 + 1
r2 ← r2

With r1 initialized to 0 and r2 to ∞, this CRA computes the length of the minimal
nonempty block of a’s between two #’s. This model has the same expressive power
as weighted automata (WA) over the structure (Z,min,+), but the use of registers
can simplify the design of functions.

The example above enjoys an extra property that can be used to restrain the
model (since a lot of interesting problems are undecidable on WA [1]). Indeed, no
register is used twice in any update function; this property is called copylessness.
This syntactic restriction, introduced by Alur et al. [3] and studied by Mazowiecki
and Riveros [12], provably weakens the model. It was the hope of Alur et al. that
this would provide a model for which equivalence is decidable.

Semilinearity and decidability of equivalence. Recall that a set R ⊆ Zk is
semilinear if it is expressible in first-order logic with addition: FO[<,+]. This
latter logic being decidable [15], semilinearity is a useful tool to show decidability
results. For instance, let f, g : A∗ → Z be expressible in some model for which the
images of functions are effectively semilinear. Suppose further that the function
h : w 7→ min{2× f(w), 2× g(w) + 1} is also in that model. Since the image h(A∗)
is effectively semilinear, one can check whether it is always even: this would show
that f(w) ≤ g(w) for all w. In this work we investigate, among other things,
whether copyless CRA (CCRA) are such a model as well. We show that, somewhat
surprisingly, they are not.

Iterating min breaks semilinearity. Deterministic automata equipped with
copyless registers with only “+c” updates are quite well-behaved [7] ; in particular,
the set

R = {r | r are the values of the registers at the end of an accepting run}

is semilinear. Naturally, min{x, y} is expressible in FO[<,+], hence FO[<,+] =

FO[<,+,min] (even, and this is not immediate, when the extra value∞ is added [8]).
This entails that if we were to give to these automata the ability to do a constant
number of min, we would still have that R is semilinear. In this paper, it is shown
that if the number of min is unbounded along runs, then the set is not semilinear
(see the proof of Theorem 18 for a simple and self-contained construction), and that
it is undecidable to check whether R is semilinear.
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Related work. The model of cost-register automata was originally introduced as
a model providing a different representation of weighted automata [3]. This followed
a similar presentation of transducers with a streaming string transducer model [2].
In both cases the authors provided a way to give a characterisation of standard
models (weighted automata and transducers) via a deterministic model at the cost
of introducing registers that store partial computations. Similar presentations of
weighted automata, like CRA, have also been given in [16, 5]. Registers were already
used in many models of automata (both deterministic and nondeterministic). The
content of registers can be: data [10]; time [4]; or processes [14]. The latter model
of Petri nets can be interpreted as vector addition systems, which are particularly
interesting in comparison with CRA. When both CRA and vector addition systems
are considered over the integers, there are cases when the two models coincide (see
the Remark on page 6 in [6]). Namely, vector addition systems do not label their
transitions with letters and the decision problem is usually the reachability problem:
is there a sequence of transitions between two given configurations? When transitions
are labelled, this model can be seen to be equivalent to CRA over integers (with only
the + operation), where instead of reachability, the decision problem is nonemptiness:
is there an accepting word? As these decision problems are not the topic of this
paper, we refer the interested reader to [5] (see e.g. Example 3 and Theorem 6).

Contributions. Beyond considerations on semilinearity, we show that CCRA over N
can simulate the runs of counter machines with zero-tests (Theorem 15). Intuitively,
the only words mapped by the CCRA to an even value are the correct executions
of the counter machine. This construction is then used to show that equivalence is
undecidable for CCRA over N and that upper-boundedness is undecidable for WA.
To better gauge the expressiveness of CCRA, we show that they are a weak form of
linearly-ambiguous WA, that is, WA for which no word w has more than k × |w|
accepting runs, for some constant k (see drawing on page 7). Since the problems we
tackle are decidable for finitely-ambiguous WA, CCRA are arguably the simplest
generalization of deterministic WA for which equivalence is undecidable.

Paper Structure. In Section 2 we define the models we use, and other fundamental
definition and results. In Section 3 we compare the expressive power of CCRA and
weighted automata. In Sections 4 and 5 we show how to simulate VASS using CCRA,
over Z∞ and N∞, respectively. Then, in Section 6, we derive undecidability results.
We present some concluding remarks in Section 7.

2. Preliminaries

We assume familiarity with automata theory, for which we settle some notations.
We write N for {0, 1, 2, . . .}, Z for the integers, and define N∞ = N ∪ {∞} and
Z∞ = Z ∪ {∞}. Naturally, min{. . . ,∞, . . .} stays the same when removing the ∞
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value, and we set min ∅ =∞. For any k ≥ 1, we write [k] for {1, 2, . . . , k}. We write
ε for the empty word.

Automata. An automaton (NFA) is a tuple (Q,A, δ, q0, F ), where Q is the set of
states, A the alphabet, δ ⊆ Q× (A ∪ {ε})×Q the transition relation, q0 the initial
state, and F ⊆ Q the set of final states. We rely on the usual vocabulary pertaining
to automata: a run is a word in δ∗ starting in q0, and such that each transition is
consistent with the next; it is accepting if the last reached state is in F ; a word
w ∈ A∗ is accepted if there is an accepting run labeled by w.

If δ is a function from Q × A to Q, the automaton is deterministic (DFA). If
there is a k ∈ N such that each accepted word w is the label of at most k × |w|
accepting runs, the automaton is linearly-ambiguous.

Tropical Semirings. A semiring is a tuple (S,⊕,⊗,0,1) where S is a set, ⊕ and
⊗ are associative binary operations, with respective identity elements 0 and 1, ⊕ is
commutative, and ⊗ distributes over ⊕.

Unless explicitly mentioned otherwise, the only semirings we consider in this work
are (Z∞,min,+,∞, 0) and (N∞,min,+,∞, 0), often dubbed “tropical semirings”.

When the discussion is not specific to one of the two semirings, we simply write
K for both. As with rings, matrix multiplication is well-defined (and associative) in
semirings; e.g., if (bij) and (cij) are 2× 2 matrices and (aij) = (bij) · (cij), then:

a2,1 = min{b2,1 + c1,1, b2,2 + c2,1} .

Weighted automata. Weighted automata will only be used in Section 3 and
Theorem 19. A weighted automaton a W over K (K-WA) is a tuple (A, λ, µ, ν)
where A = (Q,A, δ, q0, F ) is an NFA, and λ ∈ K, µ : δ → K, and ν : F → K. Given
a run t1 · t2 · · · tn ∈ δ∗ ending in a state q ∈ F in A, its weight is λ+ µ(t1) + µ(t2) +

· · ·+ µ(tn) + ν(q). The weight W(w) of a word w ∈ A∗ is the minimum weight for
all accepting runs over w in the NFA (hence it is ∞ if the word is not accepted).
The K-WA is deterministic (resp. linearly-ambiguous) if A is. We use K-DetWA and
K-LinWA for these restrictions.

Registers and counters. A central goal of this work is to present a simulation of
some counter machine with zero-tests by a register machine without zero-test but
with more complicated update functions. To avoid confusion, we will stick to that
vocabulary, and use ci for counters and ri for registers.

Cost register automata. In this work, we only consider cost register automata
over K ∈ {Z∞,N∞} where the registers are updated using expressions that use min

and “+c” for c ∈ K.

a In general, weighted automata can be defined over any semiring. The definition we bring here
applies for tropical semirings.
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Intuitive definition. A K-cost register automaton C of dimension k (K-CRA,
for short) is a DFA equipped with k registers r1, r2, . . . , rk taking values in K. The
initial values of the registers are specified by a vector λ in Kk, and each transition
is equipped with a transformation µ, referred to as the update function, of the form:

(∀i ∈ [k]) ri ← min{r1 +m1,i, r2 +m2,i, . . . , rk +mk,i, mk+1,i} ,

where each mi,j is in K (hence it can be ∞, making the subexpression irrelevant).
Each final state is paired with an output function ν of the shape:

min{r1 +m1, r2 +m2, . . . , rk +mk, mk+1} ,

where again the mi’s are in K.
Given a word w ∈ A∗, the value of C on w, written C(w), is∞ if w is not accepted

by the underlying DFA, and otherwise computed in the obvious way: the registers
are initialized, then updated along the (single) run in the DFA, and the output is
determined by the output function at the final state.

Formal definition. The K-CRA C is a tuple (A, λ, µ, ν) where A =

(Q,A, δ, q0, F ) is a DFA, λ ∈ K1×k is the initial value of the k registers, ν : F →
K(k+1)×1 gives the output function for each final state, and µ : Q×A→ K(k+1)×(k+1)

provides the update functions. To compare with the intuition given above, and using
the notation therein, µ(q, a) is:

m1,1 m1,2 · · · m1,k ∞
m2,1 m2,2 · · · m2,k ∞
...

...
. . .

...
mk,1 mk,2 · · · mk,k ∞
mk+1,1 mk+1,2 · · · mk+1,k 0


It can be readily checked that (r′, 0) = (r, 0) · µ(q, a) indeed satisfies, for all i ∈ [k]

that:

r′i = min{r1 +m1,i, r2 +m2,i, . . . , rk +mk,i, mk+1,i} .

(Recalling that the multiplication is made in the semiring (K,min,+).) Note that
the (k+1)-th component is a virtual register that will be maintained to 0. Given an
accepting run (q0, w0, q1) · (q1, w1, q2) · · · (qn, wn, qn+1) ∈ (Q×A)∗ in A, the output
value is then defined as:

C(w0w1 · · ·wn) = λ · µ(q0, w0) · µ(q1, w1) · · ·µ(qn, wn) · ν(qn+1) .

The K-CRA is said to be copyless (K-CCRA) if all the update functions satisfy,
using the notations above, that for all i ∈ [k], |{j | mi,j 6= ∞}| ≤ 1; in words, for
each i, at most one of the subexpressions “ri +mi,j” will evaluate to a non-∞ value:
the value of ri impacts at most one register.
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Vector addition systems with states and zero-tests. The main construction
of this paper focuses on simulating counters with zero-tests. The precise formalism
for our counter machines is a variant of vector addition systems with states (VASS)
over Zk, equipped with transitions that can only be fired if a designated counter is
zero. For any k, we define the update alphabet Ck as:

Ck =
⋃
i∈[k]

{inci,deci, chki} ,

the intended meaning being that inci will increment the i-th counter, deci will
decrement it, and chki will check that it is zero.

A Z-VASSz V of dimension k is a DFA (Q,Ck, δ, q0, F ). Consider a configuration
K = (q, c) ∈ Q× Zk; writing (ei) ∈ Zk for the standard basis:

• If δ(q, inci) = q′, then K can reach the configuration (q′, c+ ei);
• If δ(q,deci) = q′, then K can reach the configuration (q′, c− ei);
• If δ(q, chki) = q′, then K can reach the configuration (q′, c) if and only if
ci = 0.

We say that the Z-VASSz reaches a state q if (q0, 0) reaches, by a sequence of
configurations, (q, c) for some c. We write LV,q ⊆ (Ck)

∗ for the reachability language
of q, that is, the language of updates along the runs reaching q.

Proposition 1. The following problem is undecidable:
Given: A Z-VASSz V and a state q
Question: Is LV,q empty?

The problem stays undecidable even if |LV,q| ≤ 1 is guaranteed.

Proof. We define an extension of Z-VASSz that can implement classical Minsky
machines to streamline the reduction. Define C ′k = Ck ∪

⋃
i∈[k]{chki}. A k-counter

machine is an automaton over C ′k, with the Z-VASSz semantics, augmented with
the property that a transition labeled chki can only be taken if the i-th counter is
strictly greater than zero.

Minsky [13] showed that the emptiness of reachability languages is undecidable
for these machines—in particular, even if it is assumed that there is at most one
run reaching the given state. To show the same for Z-VASSz, we need only remove
the transitions labeled chki, while preserving the reachability languages. To do so,
it suffices to replace them with the following gadget, where j is a new counter and
some states are omitted:

q1 q2

chki

q1 q2

deci · incj

deci · incj

chki

inci · decj

chkj
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It is easily checked that upon reaching state q2, the i-th counter is restored to its
value in q1, the j-th is 0, and the state can only be reached if the i-th counter were
strictly positive.

3. CCRA and weighted automata

With the plethora of models computing functions from words to values in modern
literature, it is imperative to justify studying the seemingly artificial CCRA. In this
section, we provide a normal form that will demonstrate that these machines are
but deterministic weighted automata with a small dose of nondeterminism. More
precisely, we show in Proposition 2 and Corollary 3 that the functions computed by
kccra can be captured by a specific form of linearly-ambiguous weighted automata.
In particular, all the problems we show to be undecidable in Section 6 turn out to
be decidable for deterministic (or even finitely-ambiguous) weighted automata; this
gives credence to the assertion that N∞-CCRA is one of the weakest models for
which equivalence, for instance, is undecidable.

We conclude the section by showing, in Proposition 5, that the class of linearly-
ambiguous weighted automata strictly contains the class of functions computed by
K-CCRA .

In the following proposition, it is shown that any K-CCRA can be expressed as a
DFA making nondeterministic jumps into a K-DetWA; graphically, every K-CCRA
is equivalent to:

DFA

A

a

b

a
DetWA

a,1
W

ε

ε

ε

Proposition 2. Let C = (〈Q,A, δ, q0, F 〉, λ, µ, ν) be a K-CCRA with k registers.
There are a DFA A with state set Q× P([k]) and initial state q0, a K-DetWA W
with state set Q′, and a function η : Q× P([k])→ P(Q′) such that:

(∀w ∈ A∗) C(w) = min{Wq(v) | w = uv ∧ q ∈ η(q0.u)} ,

where Wq is W with the initial state set to q, and q0.u is the state reached by reading
u in A.

Proof. We first sketch the intuition behind the proof.
Consider the output of C on some word w. This value is of the form ri + m

for some register ri, or a constant m (indeed, it is the minimum of several such
expressions, and thus equals one of them). This value, in turn, was propagated by a
sequence of similar expressions, up to a certain initial point where it was reset to a
constant.

Viewing this in the order that w is read, we see that at some point along the
run, the value of w is “created” by a reset of the form ri ← m, and then the value is
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propagated by adding constants to it (and possibly changing the register in which it
is stored), until it is outputted.

Thus, in order to simulate C using a K-DetWA, we can nondeterministically
guess when the value is created, and follow the (deterministic) sequence of additions.
In our construction, the DFA A keeps track of the recently-reset variables, and
makes nondeterministic jumps to components of W, that track the deterministic
value updates.

We now turn to formalize this idea.
Consider a nondeterministic variant of a given K-CCRA C where updates of

the form r1 ← min{r2, r3} become nondeterministic jumps between the updates
r1 ← r2 and r1 ← r3. The final value of this variant is set to be the minimum output
of any run. Then this variant has the same output value as the original CRA, by
distributivity of addition over min.

We will assume that λ ∈ {0,∞}k and that the updates are in one of two possible
forms:

• ri ← min{r1 + m1,i, r2 + m2,i , . . . , rk + mk,i}, that is, no constant term
appears;
• ri ← 0.

In symbols, this means that if µ(q, a) = (mi,j), then for any i ∈ [k], either mk+1,i is
∞ or all mj,i, for j ∈ [k], are ∞. Any K-CCRA can be put under that form using
standard techniques. For instance, one can add fresh registers to replace the virtual
0-register in µ. (Indeed, more than one may be needed so as to preserve the copyless
restriction.)

The automaton A is the underlying automaton of C, augmented with the in-
formation of which registers were reset by the previous transition. More precisely,
A = (Q×P([k]), A, δA, q′0, ∅) where q′0 = (q0, {i | λi = 0}); note that the final states
are irrelevant. The transition function δA is defined by:

δA((q, ·), a) = (δ(q, a), E) where E = {i | µ(q, a)k+1,i = 0} .

The K-DetWA W consists of k copies of C, one for each register. Formally,
W = (B, 0, µW , νW) with B = (Q × [k], A, δB, (q0, 1), F × [k]); here, the initial
valuation is irrelevant. We now define the transition function δB and the weight
function µW . Let (q, x) be a state of B and a ∈ A. By copylessness, there is at most
one y such that µ(q, a)x,y is not ∞. If one such y exists, then:

δB((q, x), a) = (δ(q, a), y)

µW((q, x), a) = µ(q, a)x,y .

The output function of W is then, for any q ∈ Q, i ∈ [k], νW(q, i) = ν(q)i.
Finally, η : Q×P([k])→ P(Q×[k]), whose existence is claimed in the Proposition,

is defined as η(q, E) = {(q, i) | i ∈ E}.
Consider a word w ∈ A∗, and a factorization w = uv. The word u reaches a state

q in C, and a state (q, E) in A. The last transition taken in C reading u updated



November 26, 2019 12:50 WSPC/INSTRUCTION FILE main

Weak Cost Register Automata are Still Powerful 9

all the registers ri, i ∈ E, with the value 0. For each of these i’s, there will be a
run over v in W, starting at (q, i), which follows the updates applied to ri. This
process thus simulates the nondeterministic variant of C described above, showing
the Proposition.

This normal form is akin to those which can be extracted from the work of Weber
and Seidl on degrees of ambiguity (Equation 6 in [17]). We have:

Corollary 3. K-CCRA ⊆ K-LinWA.

Proof. With the notations of Proposition 2, let us see A, η, and W as a single
K-WA, where the weights in the A part are set to 0. For any word w, each run on w
consists of a run over a prefix u within A, and a run over the leftover suffix v within
W starting in some state q ∈ η(q0.u). Thus there are at most |w| × |Q′| runs, hence
the WA is linearly ambiguous.

Remark 4. Note that Proposition 2 and Corollary 3 hold for arbitrary semirings –
indeed, the proof proceeds without any modification, apart from replacing + and min

with the corresponding semiring operations. Since the focus of this work are tropical
semirings, the proofs were given in the corresponding notation.

As an application of this specific form, it is not hard to show that some specific
functions are not expressible using a Z∞-CCRA. Let minblock (resp. lastblock) be
the function from {a,#}∗ to N which, given w = #an1#an2# · · ·#ank# returns
min{ni}i∈[k] (resp. nk):

Proposition 5. The following functions are not expressible by a Z∞-CCRA:

• ci · w 7→ i+minblock(w), with w ∈ {a,#}∗;
• u · $ · v 7→ lastblock(u) + lastblock(v), with u, v ∈ {a,#}∗.

Proof. In both cases, one has to reason about when the nondeterministic jump,
given by η in Proposition 2, is made in the minimal run, bearing in mind that neither
minblock nor lastblock are computable by a DetWA. For the first example, the jump
has to be made at the beginning of the minimal block of a’s, after reading a #; thus
the number of c’s cannot be taken into account. For the second example, if the jump
is made just before the last block of a’s in v, then the value of the last block in u is
disregarded. If it is made just before the last block in u, then the DetWA part has
to compute lastblock on v, which is not possible.

For a formal proof of the claim, we use Proposition 2 and assume that the
DetWA W has n states, its largest absolute weight is W . Let us first focus on the
first function. Consider a word v = #anW+n#a(n−1)W+n−1# . . .#aW+1#a#. It is
easy to see that when reading cnW+1 · v, there must be a run which transitions from
A to W after the last c has been read. Indeed, after every read block, a run in W
has too high a weight to be relevant for the computation of the value of the next
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LinWA

ciw 7→ i+minblock(w)

u$v 7→ lastblock(u)

+lastblock(v)

Unamb. WA

w 7→ minblock(w)

Z∞-CCRA

Figure 1. Graphical depiction of the inclusions outlined in Remark 6 between function realized by
Z∞-CCRA, LinWA, and unambiguous WA.

block. (Note that the blocks of a’s are sorted from longest to shortest.) As there are
one too many blocks, a new run with a smaller weight – and which can only come
from A – is needed. Let v′ be the prefix of v after which such a run with weight 0
moves into state q from W . Since this new run can be extended to a minimal-weight
run ending at a final state, by our previous argument, we know that there is some
path from q to F . A shortest such path has length n and so cnW+1v′y, for some y
of length at most n, is in the language of the automaton. Note that its value should
be at least nW + 1 and yet the value of the run from q cannot be larger than nW ,
leading to a contradiction.

Because the blocks in v are sorted by length, an almost identical argument can
be used to prove the second part of the claim. It suffices to replace the prefix of c’s
by #anW+1#$.

Remark 6. Note that the first function of Proposition 5 is expressible by a LinWA,
and the second by an unambiguous WA (i.e., at most one run per accepted word).
Moreover, since minblock is not expressible by an unambiguous WA but is by a
CCRA (see Section 1), the classes of functions expressed by the two models are
incomparable. (See Figure 1.)

4. Simulation of Z-VASSz using Z∞-CCRA

In this section we show how to simulate Z-VASSz using Z∞-CCRA. We start by
considering the case of a single counter, and then extend it to multiple counters.
Finally, we show how to encode the result of the simulation in one of the registers.

Let V be a Z-VASSz and q a state of V . Recall that Ck is the update alphabet of
symbols inci,deci, and chki, for i ∈ [k], and that LV,q ⊆ (Ck)

∗ is the reachability
language of q (i.e., the update sequences along runs that reach q in V). We devise a
simulation of V using Z∞-CCRA in the following sense: Given a word w ∈ (Ck)

∗,
the Z∞-CCRA will output 0 if and only if w ∈ LV,q.
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Compared to the simulation by N∞-CCRA of the forthcoming Section 5, the Z
case is quite straightforward, and reminiscent of the methodology of [1]; it however
provides some intuition for the construction for N.

We present how the counter increments (inc), decrements (dec), and zero-tests
(chk) are implemented for a single counter before showing how multiple counters
can be handled. The automaton structure of the source Z-VASSz, with accepting
state q, can then be followed by the CRA while simulating the counters.

4.1. Simulation of a single counter

Since we are working with a single counter, we drop the indices of the letters in C1.
A single counter c will be simulated with 3 registers: r+ and r−, carrying the values
of c and −c, respectively, and rz which shall be 0 if each time the letter chk was
read, c was 0. If at any time chk was read while c was nonzero, then rz will be
strictly smaller than 0. This is implemented as follows:

inc :


r+ ← r+ + 1

r− ← r− − 1

rz ← rz
dec :


r+ ← r+ − 1

r− ← r− + 1

rz ← rz
chk :


r+ ← 0

r− ← 0

rz ← min{rz, r+, r−}

Assertion 7. If rz becomes strictly smaller than 0, it will stay so after reading any
word in (C1)

∗.

Assertion 8. Assume r+ = r− = rz = 0. After reading i letters inc and j letters
dec, in any order, and a final chk, the new values of the registers satisfy:

(1) If i = j, then r+ = r− = rz = 0;
(2) Otherwise rz < 0.

This simulates the original counter in the following sense:

Proposition 9. Let V be a Z-VASSz of dimension 1 and q a state of V. There is a
Z∞-CCRA C with C(w) ≤ 0 for any w and such that:

(∀w ∈ (C1)
∗) w ∈ LV,q ⇔ C(w) = 0 .

Proof. Let V = (Q,C1, δ, q0, F ) and q ∈ Q. The Z∞-CCRA C with 3 registers is
defined as having (Q,C1, δ, q0, {q}) as the automaton structure, and the updates are
dictated by the letter being read, as above. On state q, C outputs rz. By Assertions 7
and 8, we conclude the proposition.

4.2. Simulation of multiple counters

It is quite straightforward to combine multiple rz registers into one. Indeed, if k
counters are simulated using registers r+i , r

−
i , and r

z
i , i ∈ [k], then at the end of the

simulation, one can set:

flag← min{rz1, rz2, . . . , rzk} ,
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so that flag is 0 if and only if the execution saw no illegal zero-tests (and negative
otherwise).

Proposition 10. Let V be a Z-VASSz of dimension k and q a state of V. There is
a Z∞-CCRA C with C(w) ≤ 0 for any w and such that:

(∀w ∈ (Ck)
∗) w ∈ LV,q ⇔ C(w) = 0 .

4.3. Outputting on correct executions

So far, we were interested in having a specific output if the simulated execution
was correct. If we wanted, by contrast, to output one of the registers on correct
executions, we would need one more idea; we note that the same idea will be reused
in Section 5 for the simulation using N∞-CCRA.

Formally, we show the following.

Proposition 11. Let V be a Z-VASSz of dimension k and q a state of V. There
is a Z∞-CCRA C over the alphabet Ck ∪ {z} (where z /∈ Ck), whose output is the
value of a designated register, and the following hold:

(1) For every w ∈ LV,q there exists a unique n ∈ N such that C(wzn) is even,
(2) For every w′ ∈ (Ck ∪ {z})∗, if C(w′) is even, then w′ = wzn for some

w ∈ LV,q and n ∈ N.

In the remainder of the section we illustrate the proof of Proposition 11.
Suppose that we wish to output the register r if and only if flag is 0; recall that

flag may only be 0 or negative. We will do so by repeatedly reading a new letter z,
and having r be the only possible even output value, provided flag is 0—no even
value is produced if flag is negative.

We may assume that, by construction, flag is even and r is a multiple of 4; we
further assume that we have a register r

1
2 that contains half of r’s value. We add the

letter z to our alphabet, to be read at the end of the simulation; reading z increases
r

1
2 by 2 and flag by 4. The output value is then set to:

min{r + 1,flag+ 1, r
1
2 } .

Write s for the value of r before reading the z’s, and f for the value of flag. After
reading i letters z, the new values of the registers read:

r = s, flag = f + 4× i, r
1
2 =

s

2
+ 2× i .

For an even output to be produced, r
1
2 has to be minimal. If f is 0, this happens

only when i = s
4 , and the output is then s. If f is negative, then flag < r

1
2 for i ≤ s

4

and r < r
1
2 for larger values of i; in that case, no even output value is produced.

This is illustrated in the following graphics, where s = 4, and the left-hand side
depicts the case f = 0, while, in the right-hand side, f = −2.
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5. Simulation of Z-VASSz using N∞-CCRA

In this section, we devise a simulation of V using N∞-CCRA in the following sense:
Let V be a Z-VASSz and q a state of V. Given a word w ∈ (Ck)

∗, the N∞-CCRA
will output an even value if and only if w ∈ LV,q.

Translating the simulation strategy for Z, described in Section 4, to the N setting
turns out to be a nontrivial matter. Indeed, one might expect that it would be
enough to increase the updates so that no negative number appears therein. This
would contribute a linear blowup to the values, but does not seem to change the
overall behavior. However, the resets made while reading chki would have to be
equal to that blowup, and this would require copying.

The simulation will thus follow two phases. First, one that corresponds to the
strategy for Z with the updates tweaked to be positive; second, after reading a chki,
a climb-back phase that puts the registers back in a manageable state (called “ready”
later on). For this latter phase, the N∞-CCRA will read a word in cb∗i ·chkcbi—the
letter cb standing for climb-back. Further, combining the acceptance conditions of
multiple counters will also require some new letters; the alphabet of the automaton
is thus:

C ′k = Ck ∪
⋃
i∈[k]

{cbi, chkcbi, zi} .

5.1. Simulation of a single counter

Again, since we are working with a single counter, we drop the indices of the letters
in C ′1. A single counter in the Z-VASSz will be simulated by 7 different registers,
each with a simple intended meaning:

• r+ and r− should respectively count the number of increments and decre-
ments of the counter;
• ru increases each time the counter is either incremented or decremented; it
counts the number of updates to the counter;
• The register r

u
2 should be half b of ru;

bThe concerned reader may wonder how we encode “half” in integers. This is done by effectively
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• rz will be a witness that the chk letter has always been read when the
simulated counter was zero and that the climb-back phases were done
correctly (this notion is formalized in Lemma 13 below);
• Finally, we will need two internal registers rcb and r2cb, used solely in the
climb-back phase.

To simplify the discussion, we give names to some register configurations:

• They are ready if r+ = r− = rz = r
u
2 = 1

2 × r
u;

• They are to-climb if r+ = r− = 0 and rz = r
u
2 = 1

2 × r
u;

• They are dead if rz < r
u
2 .

In the first two configurations, we also assume that rcb = r2cb = 0.

Goal of the construction. We will show that if the registers are ready and we
read an equal number of inc’s and dec’s followed by a chk, then the registers
become to-climb. There is then a precise number i such that reading cbi ·chkcb will
put the registers back in ready mode. Crucially, if the numbers of inc’s and dec’s
are not equal, or an incorrect number of cb’s is read, then the registers become
dead.

The updates are as follows, where the registers not shown are simply preserved.
As we saw in Section 4.3, we will require that the values of the registers be divisible
by some values, hence rather than incrementing with 1, we increment by e ∈ N, a
value we shall determine later. Note that these are indeed copyless updates.

inc :


r+ ← r+ + e

ru ← ru + e

r
u
2 ← r

u
2 + e

2

rz ← rz + e
2

dec :


r− ← r− + e

ru ← ru + e

r
u
2 ← r

u
2 + e

2

rz ← rz + e
2

chk :


r+ ← 0

r− ← 0

rz ← min{rz, r+, r−}

cb :



r+ ← r+ + e

r− ← r− + e

r
u
2 ← r

u
2 + e

2

rz ← rz + e
2

rcb ← rcb + e

r2cb ← r2cb + 2× e

chkcb :


rcb ← 0

r2cb ← 0

ru ← r2cb

rz ← min{rz, rcb, ru}

Assertion 12. If the registers are dead, they will stay so after reading any word in
(C ′1)

∗.

Lemma 13. Assume the registers are ready. After reading i letters inc and j letters
dec, in any order, and a final chk, the new values of the registers satisfy:

(1) If i = j, then they are to-climb;

multiplying all registers by some large enough constant.
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(2) Otherwise, they are dead.

Proof. Suppose r+ = r− = rz = r
u
2 = 1

2 × r
u, and let us name that value s. After

reading i letters inc and j letters dec, the new values are:

r+ = s+ e× i, r− = s+ e× j, rz = r
u
2 =

1

2
× ru = s+ e× i+ j

2
.

Now, if i = j then r+ = r− = rz = r
u
2 = 1

2 × r
u, thus reading chk will indeed make

the registers to-climb. Otherwise, one of r+ or r− is smaller than rz, and reading
chk will make the registers dead.

Lemma 14. Assume the registers are to-climb. After reading cbi · chkcb, the new
values of the registers satisfy:

(1) If i is equal to the starting value of rz multiplied by 2
e , then they are ready;

(2) Otherwise, they are dead.

Proof. Suppose r+ = r− = 0 and rz = r
u
2 = 1

2 × r
u; we name that latter value s.

After reading i letters cb, the new values are:

r+ = r− = rcb =
1

2
× r2cb = e× i, rz = r

u
2 = s+ e× i

2
, ru = 2× s .

Now if i = 2×s
e , then r+ = r− = rcb = 1

2 × r
2cb = rz = r

u
2 = 2× s. Reading chkcb

thus makes the registers ready. If i is smaller than 2×s
e then rcb < rz; if it is greater,

then ru < rz: reading chkcb thus makes the registers dead.

As we describe in the goal of the construction above, Lemma 13 ensures that
a correct number of increases and decreases is read before reading rz, Lemma 14
ensures that the correct number of rcb occurrences is read, and Assertion 12 ensures
that any violation cannot be recovered later.

5.2. Simulation of multiple counters

We just saw how to simulate a single counter in the sense that the registers are not
dead if and only if the input word describes a correct run (i.e., one in which chk is
only read if the counter is 0). Let us now exhibit a method that combines multiple
such simulations, and outputs an even value if and only if none of the simulations is
dead. To do so, we will repeatedly read new letters z1, z2, . . . , zk at the very end of
the execution, in a similar fashion as done in Section 4.3.

Let us suppose we have k simulated counters, hence k sets of 7 registers. For
this phase, we will only use rzi , for each i, but we will have one more register in our
N∞-CCRA, named ravg. The purpose of ravg is to hold the average of all the r

u
2
i ;

this is easily achieved by adding to the above updates:

ravg ← ravg +
e

2× k
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whenever a r
u
2
i is incremented (always by e

2 ). Now for each i, the new letter zi will
update the registers with: {

rzi ← rzi +
e
2

ravg ← ravg + e
2×k

The output value of the N∞-CCRA is then set to

min{ravg, rz1 + 1, rz2 + 1, . . . , rzk + 1} . (1)

We let e be such that all the registers are even (e.g., e = 4k).
If ravg was the average of the rzi ’s before reading the zi’s—and this only happens

if none of the register set was dead—it will stay so reading zi’s. Consequently, there
is a number of each letter zi that can be read so that all the rzi ’s are equal, making
ravg the output value of the N∞-CCRA.

If ravg was greater than the average of the rzi ’s—implying that at least one set of
registers was dead—then ravg will never be the output of the CCRA after reading
zi’s.

Theorem 15 (Simulation) Let V be a Z-VASSz of dimension k and q a state
of V. Write h : (C ′k)

∗ → (Ck)
∗ for the function that erases the letters cbi, chkcbi,

and zi. There is an N∞-CCRA C such that for all w ∈ (Ck)
∗:

w ∈ LV,q ⇔ (∃w′ ∈ h−1(w))[C(w′) is even] .

Moreover, if there exists such w′, then it is unique.

Proof. The only detail left to deal with is the uniqueness of the w′. We can certainly
make sure that C outputs a value if and only if the input is of the form:

(inci + deci + chki · cb∗i · chkcbi)
∗ · (zi)∗i ,

but even if the first half (without the zi’s) is indeed unique, as per Lemma 14,
the zi’s need not be so. To preserve uniqueness, this latter part is replaced by:⋃

j∈[k]

∏
i=1,...,k

i6=j

(zi)
∗ .

This serves two purposes: first, the order on the zi’s is fixed; second, one of the
zj will not be used, hence the condition that all the rzi be equal will only be satisfied
when they all evaluate to rzj for some j. Naturally, such a j exists, it is simply the
index of a maximal rzi , making

∏
i=1,...,k

(zi)
rzj−r

z
i the only possible suffix leading to

an even value.

6. Applications

In this section we draw a number of undecidability results as consequences of the
simulations presented in Sections 4 and 5.
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Theorem 16 (Equivalence) The following problem is undecidable:
Given: Two N∞-CCRA C and C′ over A∗

Question: (∀w ∈ A∗)[C(w) = C′(w)]

Proof. Let V be a Z-VASSz and q a state of V , and consider the N∞-CCRA C that
simulates LV,q. We reduce deciding if that language is empty (which is undecidable
by Proposition 1) to the problem at hand. Equation (1), defining the output of C,
is such that ravg is the minimum if and only if the execution was correct. Thus
replacing this output function by:

min{rz1 + 1, rz2 + 1, . . . , rzk + 1}

changes the output value of a word if and only if it was a correct run. Calling C′
this modified version, it holds that (∀w ∈ A∗)[C(w) = C′(w)] if and only if LV,q = ∅.

Since equality can be reduced to two-way inequality, we immediately obtain the
following.

Corollary 17 (Inequality) The following problem is undecidable:
Given: Two N∞-CCRA C and C′ over A∗

Question: (∀w ∈ A∗)[C(w) ≤ C′(w)]

A direct consequence of Theorem 15 and Proposition 1, it is undecidable whether
the image of an N∞-CCRA is always odd. Furthermore, that image may be non-
semilinear (see the following proof), and:

Theorem 18 (Semilinearity) The following problem is undecidable:
Given: An N∞-CCRA C over A∗

Question: Is C(A∗) semilinear, i.e., an eventually periodic set?

Proof. We provide an independent construction which bears some similarities to
the “climb-back” method. It doubles a register r in the following sense: if r is a
register with starting value s, then reading cbs/2 · chkcb doubles the value of r; if
any other number of cb’s is read (which happens in particular when s is odd), the
new value of r will be some odd number.

Consider a register r with initial value s, and suppose we have an additional
register r′ holding 2 × s. We introduce two new registers, rcb and r2cb initialized
with 0. Upon reading a word cbi · chkcb, we apply the updates:

cb :


r ← r + 2

rcb ← rcb + 4

r2cb ← r2cb + 8

chkcb :


rcb ← 0

r2cb ← 0

r′ ← r2cb

r ← min{r, r′ + 1, rcb + 1}
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After reading cbi, it holds that r = s+ 2× i, rcb = 4× i, and r2cb = 8× i.
If i = s

2 , then r = rcb = r′ = 2× s, hence after reading chkcb, we have indeed
r = r′

2 = 2 × s, and the extra registers are reset: we are back to our starting
hypothesis.

If i 6= s
2 , then either r′ < r (when i > s

2 ) or r
cb < r (when i < s

2 ). In both cases,
after reading chkcb, r becomes odd, and will stay so after reading any other word.

(As a side note, consider the N∞-CCRA with the above updates and r initialized
to 2, that reads words in (cb∗ ·chkcb)∗. Then the only even outputs of this machine
are the powers of two, a nonsemilinear set.)

This concludes the construction. We now present a reduction from the problem
of Proposition 1.

Let V be a Z-VASSz and q a state of V, and consider the N∞-CCRA C that
simulates LV,q. We assume that |LV,q| ≤ 1, and again reduce deciding LV,q = ∅ to
the problem at hand.

First we note that we may assume that C outputs all the odd numbers, for
instance by adding a letter ` and, upon reading `n, outputting 2× n+ 1. Also recall
that if LV,q is nonempty, then there is a unique w such that C(w) is even.

We now modify C into C′ to incorporate the above machinery. We simply store
in a new register r the output value of C, and proceed by reading words of the form
cbi · chkcb with the updates as above. If LV,q = ∅, then C′((C ′k)∗) is all the odd
numbers, a semilinear set. Otherwise, there is one (and only one) even value s in
the image of C, and it holds that:

C′((C ′k)∗) = (2N+ 1) ∪ {2i × s | i ≥ 0} ,

a nonsemilinear set.

Finally, we show the undecidability of upperboundedness of Z∞-WA. We remark
that this result is known as folklore. However, to the best of our knowledge, it is not
published.

Theorem 19 (Upperboundedness) The following problem is undecidable:
Given: A Z∞-WA A over A∗

Question: (∃c ∈ Z)(∀w ∈ A∗)[A(w) ≤ c]

Proof. Let V be a Z-VASSz and q a state of V, and consider the Z∞-CCRA C
that simulates LV,q. Relying on Proposition 2, let W be a Z∞-WA equivalent to C.
Tweak W to output the same as C plus one, hence W(w) is 1 if and only if w ∈ LV,q.
Now let W ′ be W with an added letter # that jumps from the final states of W to
its initial state; formally, let W = (A, λ, µ, ν) with A = (Q,A, δ, q0, F ), then W ′ is
(A′, λ, µ′, ν) where A′ = (Q,A ] {#}, δ ∪ {(q,#, q0) | q ∈ F}, q0, F ), and µ′ agrees
with µ on δ and is extended by µ(q,#, q0) = ν(q) + λ.
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In essence, W ′ is iterating W:

W ′(w1#w2# · · ·#wk) =
∑
i∈[k]

W(wi) .

From this, we see that if W is always negative or zero, W ′ is bounded, otherwise, if
W(w) = 1, then W ′((w#)c · w) = c+ 1, hence W ′ is unbounded.

7. Conclusion

Deceptively powerful, copyless cost register automata with increments and min

operations were shown to be able to simulate and check runs of counter machines.
The constructions show that the repeated use of min enables behaviors that appear
outside the scope of copylessness, e.g., an N∞-CCRA can double the value of a
register (or, more precisely, can attempt to do so while knowing when it failed). As
a main consequence, equivalence of N∞-CCRA is undecidable.

We wish to highlight three open questions:

(1) Theorem 19 comes short of telling us anything about the decidability of
upper-boundedness for Z∞-CCRA (the same being decidable for N∞-CCRA
and N-WA in general [9]). Note that Proposition 10 shows that it cannot
be decided whether a Z∞-CCRA is upper-bounded by a given constant.

(2) Mazowiecki and Riveros [12] studied a restriction of CCRA in which, in
particular, each register is either always updated with increments or with
minimums. Our constructions rely heavily on the ability to alternate these
two operations; we conjecture that equivalence is decidable for this restriction
of CCRA over N.

(3) Since CCRA are effectively expressible as linearly-ambiguous weighted
automata (Corollary 3), one can decide, using a result of Kirsten and
Lombardy [11], whether a CCRA is expressible as a deterministic weighted
automaton. The precise complexity of that problem is however open.
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