
DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

Weak Cost Register Automata are Still Powerful

Shaull Almagor1, Michaël Cadilhac1, Filip Mazowiecki2, and Guillermo Pérez3

1 University of Oxford
2 LABRI, Université de Bordeaux

3 Université Libre de Bruxelles

Abstract We consider one of the weakest variants of cost register au-
tomata over a tropical semiring, namely copyless cost register automata
over N with updates using min and increments. We show that this model
can simulate, in some sense, counter machines with zero-tests. We deduce
that a number of problems pertaining to that model are undecidable, in
particular equivalence, disproving a conjecture of Alur et al. from 2012.
To emphasize how weak these machines are, we also show that they
can be simulated by a restricted form of linearly-ambiguous weighted
automata.

1 Introduction . 1
2 Preliminaries . 3
3 CCRA and weighted automata . 5
4 Simulation of Z-VASSz using CCRA. 8

4.1 Simulation by Z∞-CCRA. 8
Simulation of a single counter . 8
Simulation of multiple counters . 9

4.2 Simulation by N∞-CCRA . 10
Simulation of a single counter . 10
Simulation of multiple counters . 12

5 Applications . 13
6 Conclusion . 15

1 Introduction

Cost register automata (CRA) [2] encompass a wealth of computation models
for functions from words to values (herein, integers). In their full generality,
a CRA is simply a DFA equipped with registers that are updated upon taking
transitions. The updates are expressions built using a prescribed set of operations
(e.g., +,×,min, . . .), constants, and the registers themselves.

In this work, we will focus on CRA computing integer values, where the
updates may only use “+c”, for any constant c, and min. For instance:

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

r2r2

#,

{
r1 ← r1
r2 ← r2

a,

{
r1 ← 1
r2 ← r2

#,

{
r1 ← 0
r2 ← min{r1, r2}

a,

{
r1 ← r1 + 1
r2 ← r2

With r1 initialized to 0 and r2 to∞, this CRA computes the length of the mini-
mal nonempty block of a’s between two #’s. This model has the same expressive
power as weighted automata (WA) over the structure (Z,min,+), but the use
of registers can simplify the design of functions.

The example above enjoys an extra property that can be used to restrain
the model (since a lot of interesting problems are undecidable on WA [1]). In-
deed, no register is used twice in any update function; this property is called
copylessness. This syntactic restriction, introduced by Alur et al. [2] and studied
by Mazowiecki and Riveros [5], provably weakens the model. It was the hope of
Alur et al. that this would provide a model for which equivalence is decidable.

Semilinearity and decidability of equivalence. Recall that a set R ⊆ Zk is semi-
linear if it is expressible in first-order logic with addition: FO[<,+]. This latter
logic being decidable [7], semilinearity is a useful tool to show decidability re-
sults. For instance, let f, g : A∗ → Z be expressible in some model for which the
images of functions are effectively semilinear. Suppose further that the function
h : w 7→ min{2×f(w), 2×g(w)+1} is also in that model. Since the image h(A∗)
is effectively semilinear, one can check whether it is always even: this would show
that f(w) ≤ g(w) for all w. A first natural question is thus, is copyless CRA
(CCRA) such a model?

Iterating min breaks semilinearity. Deterministic automata equipped with copy-
less registers with only “+c” updates are quite well-behaved [3, Section 6]; in
particular, the set

R = {r | r are the values of the registers at the end of an accepting run}

is semilinear. Naturally, min{x, y} is expressible in FO[<,+], hence FO[<,+] =
FO[<,+,min] (even, and this is not immediate, when the extra value ∞ is
added [4]). This entails that if we were to give to these automata the ability
to do a constant number of min, we would still have that R is semilinear. In this
paper, we show that if the number of min is unbounded along runs, then the
set is not semilinear (see the proof of Theorem 3 for a simple construction), and
that it is undecidable to check whether R is semilinear.

Contributions. Beyond considerations on semilinearity, we show that CCRA over
N can simulate counter machines with zero-tests (Theorem 1). Intuitively, the
only words mapped by the CCRA to an even value are the correct executions
of the counter machine. This construction is then used to show that equivalence

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

is undecidable for CCRA over N and that upper-boundedness is undecidable
for WA. To better gauge the expressiveness of CCRA, we show that they are a
weak form of linearly-ambiguous WA, that is, WA for which a word w has no
more than k × |w| accepting runs, for some constant k (see drawing on page 5).
Since the problems we tackle are decidable for finitely-ambiguous WA, CCRA are
arguably the simplest generalization of deterministic WA for which equivalence
is undecidable.

2 Preliminaries

We assume familiarity with automata theory, for which we settle some notations.
We write N for {0, 1, 2, . . .}, Z for the integers, and define N∞ = N ∪ {∞} and
Z∞ = Z∪{∞}. Naturally, min{. . . ,∞, . . .} stays the same when removing the∞
value, and we set min ∅ = ∞. For any k ≥ 1, we write [k] for {1, 2, . . . , k}. We
write ε for the empty word.

Automata. An automaton (NFA) is a tuple (Q,A, δ, q0, F), where Q is the set
of states, A the alphabet, δ ⊆ Q× (A ∪ {ε})×Q the transition function, q0 the
initial state, and F ⊆ Q the set of final states. We rely on the usual vocabulary
pertaining to automata: a run is a word in δ∗ starting in q0, and such that each
transition is consistent with the next; it is accepting if the last reached state is
in F ; a word w ∈ A∗ is accepted if there is an accepting run labeled by w.

If δ is a function from Q×A to Q, the automaton is deterministic (DFA). If
there is a k ∈ N such that each accepted word w is the label of at most k × |w|
accepting runs, the automaton is linearly-ambiguous.

Tropicalites. The only semirings (i.e., algebraic structures) that we will use are
(Z∞,min,+) and (N∞,min,+). As with rings, matrix multiplication is well-
defined in semirings; e.g., over 2× 2 matrices, if (aij) = (bij) · (cij), then:

a2,1 = min{b2,1 + c1,1, b2,2 + c2,1} .

Weighted automata. Weighted automata will only be used in Section 3 and
Theorem 4. A weighted automaton W over K (K-WA) is a tuple (A, λ, µ, ν)
where A = (Q,A, δ, q0, F) is an NFA, and λ ∈ K, µ : δ → K, and ν : F → K.
Given a run t1 · t2 · · · tn ∈ δ∗ ending in a state q ∈ F in cA, its weight is
λ+µ(t1)+µ(t2)+µ(tn)+ν(q). The weightW(w) of a word w ∈ A∗ is the minimum
weight for all accepting runs over w in the NFA. The K-WA is deterministic
(resp. linearly-ambiguous) if A is. We use K-DetWA and K-LinWA for these
restrictions.

Registers and counters. A central goal of this work is to present a simulation of
some counter machine with zero-tests by a register machine without zero-test
but with more complicated update functions. To avoid confusion, we will stick
to that vocabulary, and use ci for counters and ri for registers.

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

Cost register automata. In this work, we only consider cost register automata
over K ∈ {Z∞,N∞} where the registers are updated using expressions that use
min and “+c” for c ∈ K. A precise, formal definition of the model will only be
needed for Proposition 2; to present the main constructions, we will simply rely
on the following more intuitive definition.

A K-CRA C of dimension k is a DFA equipped with k registers r1, r2, . . . , rk
taking values in K. The initial values of the registers are specified by a vector
in Kk, and each transition further induces a transformation of the form:

(∀i ∈ [k]) ri ← min{r1 +m1,i, r2 +m2,i, . . . , rk +mk,i, mk+1,i}

where eachmi,j is in K (hence it can be∞, making the subexpression irrelevant).
Each final state is paired with an output function of the shape:

min{r1 +m1, r2 +m2, . . . , rk +mk, mk+1}

where again the mi’s are in K.
Given a word w ∈ A∗, the value of C on w, written C(w), is defined if w

reaches a final state in the underlying DFA, and it is computed in the obvious
way: the registers are initialized, then updated along the (single) run in the DFA,
and the output is determined by the output function at the final state.

The K-CRA is said to be copyless (K-CCRA) if all the update functions
verify, using the notations above, that for all i ∈ [k], |{j | mi,j 6= ∞}| ≤ 1; in
words, for each i, at most one of the subexpressions “ri +mi,j” will evaluate to
a non-∞ value: the value of ri impacts at most one register.

Vector addition systems with states and zero-tests. The main construction of this
paper focuses on simulating counters with zero-tests. The precise formalism for
our counter machines is a variant of vector addition systems with states (VASS)
over Zk, equipped with transitions that can only be fired if a designated counter
is zero. For any k, we define the update alphabet Ck as:

Ck =
⋃
i∈[k]

{inci,deci, chki} ,

the intended meaning being that inci will increment the i-th counter, deci will
decrement it, and chki will check that it is zero.

A Z-VASSz V of dimension k is a DFA (Q,Ck, δ, q0, F). Consider a configu-
ration K = (q, c) ∈ Q× Zk; writing (ei) ∈ Zk for the standard basis:

– If δ(q, inci) = q′, then K can reach the configuration (q′, c+ ei);
– If δ(q,deci) = q′, then K can reach the configuration (q′, c− ei);
– If δ(q, chki) = q′, then K can reach the configuration (q′, c) iff ci = 0.

We say that the Z-VASSz reaches a state q if (q0, 0) reaches, by a sequence
of configurations, (q, c) for some c. We write LV,q ⊆ (Ck)

∗ for the reachability
language of q, that is, the language of updates along the runs reaching q.

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

Proposition 1. The following problem is undecidable:
Given: A Z-VASSz V and a state q
Question: Is LV,q empty?

The problem stays undecidable even if |LV,q| ≤ 1 is guaranteed.

Proof. We see classical Minsky machines as an extension of Z-VASSz to stream-
line the reduction. Define C ′k = Ck ∪

⋃
i∈[k]{chki}. A k-counter machine is an

automaton over C ′k, with the Z-VASSz semantics, augmented with the property
that a transition labeled chki can only be taken if the i-th counter is nonzero.

Minsky [6] showed that the emptiness of reachability languages is undecidable
for these machines—in particular, even if it is assumed that there is at most one
run reaching the given state. To show the same for Z-VASSz, we need only remove
the transitions labeled chki, while preserving the reachability languages. To do
so, it suffices to replace them with the following gadget, where j is a new counter
and some states are omited:

q1 q2

chki

q1 q2

deci · incj

deci · incj

chki

inci · decj

chkj

It is easily checked that upon reaching state q2, the i-th counter is restored to
its value in q1, the j-th is 0, and the state can only be reached if the i-th counter
were strictly positive. ut

3 CCRA and weighted automata

With the plethora of models computing functions from word to values in modern
literature, it is imperative to justify studying the seemingly artificial CCRA. In
this section, we provide a normal form that will demonstrate that these machines
are but deterministic weighted automata with a small dose of nondeterminism.
In particular, all the problems we show to be undecidable in Section 5 turn out to
be decidable for deterministic (or even finitely-ambiguous) weighted automata;
this gives credence to the assertion that N∞-CCRA is one of the weakest models
for which equivalence, for instance, is undecidable.

In the following proposition, it is shown that any K-CCRA can be expressed
as a a DFA making nondeterministic jumps into a DetWA; graphically, every
K-CCRA is equivalent to:

DFA

A

a

b

a
DetWA

a,1
W

ε

ε

ε

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

Proposition 2. Let f : A∗ → K be a K-CCRA. There are a DFA A with state
set Q and initial state q0, a K-DetWA W with state set Q′, and a function
η : Q→ P(Q′) such that:

(∀w ∈ A∗) f(w) = min{Wq(v) | w = uv ∧ q ∈ η(q0.u)} ,

where Wq is W with the initial state set to q, and q0.u is the state reached by
reading u in A.

Proof. We first sketch the proof idea. Consider a nondeterministic variant of a
given K-CCRA C where updates of the form r1 ← min{r2, r3} become nonde-
terministic jumps between the updates r1 ← r2 and r1 ← r3. The final value of
this variant is set to be the minimum output of any run. Then this variant has
the same output value as the original CRA, by distributivity of the min oper-
ation. We implement that strategy using a DFA A which, on resets (r1 ← 0),
starts a new run within a DetWA that follows the increments (r1 ← r1+m) and
movements (ri ← r1) of the register.

We now formalize the definition of CRA. A K-CCRA C of dimension k is a
tuple (A′, λ, µ, ν) where A′ = (Q,A, δ, q0, F) is a DFA, λ ∈ K1×k is the initial
value of the k registers, ν : F → K(k+1)×1 gives the output function for each final
state, and µ : Q×A→ K(k+1)×(k+1) provides the update functions. To compare
with the definition on page 4, using the notation therein, µ(q, a) is:

m1,1 m1,2 · · · m1,k ∞
m2,1 m2,2 · · · m2,k ∞
...

...
. . .

...
mk,1 mk,2 · · · mk,k ∞
mk+1,1 mk+1,2 · · · mk+1,k 0

It can be readily checked that (r′, 0) = (r, 0)·µ(q, a) indeed verifies, for all i ∈ [k],
recalling that the multiplication is made in the semiring (K,min,+), that:

r′i = min{r1 +m1,i, r2 +m2,i, . . . , rk +mk,i, mk+1,i} .

Note that the (k+1)-th component is a virtual register that will be maintained
to 0. Given a run (q0, w0) · (q1, w1) · · · (qn, wn) ∈ (Q×A)∗ in A′ ending in a state
qn+1 ∈ F , the output value is then defined as:

C(w0w1 · · ·wn) = λ · µ(q0, w0) · µ(q1, w1) · · ·µ(qn, wn) · ν(qn+1) .

Now that the precise definition of K-CRA is settled, we present the construc-
tion. We will assume that λ ∈ {0,∞}k and that the updates are in one of two
possible forms:

– ri ← min{r1 +m1, r2 +m2 . . . , rk +mk}, that is, no constant term appears;
– ri ← 0.

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

In symbols, this means that if µ(q, a) = (mi,j), then for any i ∈ [k], either mk+1,i

is ∞ or all mj,i, for j ∈ [k], are ∞. Any K-CCRA can be put under that form
using standard techniques.

The automaton A is the underlying automaton of C, augmented with the
information of which registers were reset by the previous transition. More pre-
cisely, A = (Q× P([k]), A, δA, q′0, ∅) where q′0 = (q0, {i | λi = 0}); note that the
final states are irrelevant. The transition function δA is defined by:

δA((q, ·), a) = (δ(q, a), E) where E = {i | µ(q, a)k+1,i = 0} .

The K-DetWA W consists of k copies of C, one for each register. Formally,
W = (B, 0, µW , νW) with B = (Q × [k], A, δB, (q0, 1), F × [k]); here, the initial
valuation is irrelevant. We now define the transition function δB and the weight
function µW . Let (q, x) be a state of B and a ∈ A. By copylessness, there is at
most one y such that µ(q, a)x,y is not ∞. If one such y exists, then:

δB((q, x), a) = (δ(q, a), y)

µW((q, x), a) = µ(q, a)x,y .

The output function of W is then, for any q ∈ Q, i ∈ [k], νW(q, i) = ν(q)i.
Finally, η : Q× P([k])→ P(Q× [k]) is defined as η(q, E) = {(q, i) | i ∈ E}.
Consider a word w ∈ A∗, and a factorization w = uv. The word u reaches a

state q in C, and a state (q, E) in A. The last transition taken in C reading u
updated all the registers ri, i ∈ E, with the value 0. For each of these i’s, there
will be a run over v in W, starting at (q, i), which follows the updates applied
to ri. This process thus simulates the nondeterministic variant of C described
above, showing the Proposition. ut

Corollary 1. K-CCRA ⊆ K-LinWA.

Proof. With the notations of Proposition 2, let us see A, η, and W as a single
K-WA, where the weights in the A part are set to 0. For any word w, each run on
w consists of a run over a prefix u within A, and a run over the leftover suffix v
within W starting in some state q ∈ η(q0.u). Thus there are at most |w| × |Q′|
runs, hence the WA is linearly ambiguous. ut

As an application of this specific form, it is not hard to show that some specific
functions are not expressible using a Z∞-CCRA. Let minblock (resp. lastblock)
be the function from {a,#}∗ to N which, given w = #an1#an2# · · ·#ank#
returns min{ni}i∈[k] (resp. nk):

Proposition 3. The following functions are not expressible by a Z∞-CCRA:

– ci · w 7→ i+minblock(w), with w ∈ {a,#}∗;
– u · $ · v 7→ lastblock(u) + lastblock(v), with u, v ∈ {a,#}∗.

Proof (sketch). In both cases, one has to reason about when the nondeterministic
jump, given by η in Proposition 2, is made in the minimal run, bearing in mind
that neither minblock nor lastblock are computable by a DetWA.

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

For the first example, the jump has to be made at the beginning of the
minimal block of a’s, after reading a #; thus the number of c’s cannot be taken
into account. For the second example, if the jump is made just before the last
block of a’s in v, then the value of the last block in u is disregarded. If it is made
just before the last block in u, then the DetWA part has to compute lastblock
on v, which is not possible. ut

Note that the first function of Proposition 3 is expressible by a LinWA, and
the second by an unambiguous WA (i.e., at most one run per accepted word).
Moreover, since minblock is not expressible by an unambiguous WA, the classes
of functions expressed by CCRA and unambiguous WA are incomparable.

4 Simulation of Z-VASSz using CCRA

Let V be a Z-VASSz and q a state of V. Recall that Ck is the update alphabet of
symbols inci,deci, and chki, and that LV,q ⊆ (Ck)

∗ is the reachability language
of q. In this section, we devise a simulation of V using CCRA in the following
sense: Given a word w ∈ (Ck)

∗, the Z∞-CCRA (resp. N∞-CCRA) will output 0
(resp. an even value) iff w ∈ LV,q.

We will first tackle the simulation using Z∞-CCRA before presenting a con-
struction for N∞-CCRA. The Z case is quite simpler, and reminiscent of the
methodology of [1], but it provides some intuition for the construction for N.

In both cases, we present how the counter increments (inc), decrements
(dec), and zero-tests (chk) are implemented for a single counter before showing
how multiple counters can be handled. The automaton structure of the source
Z-VASSz, with accepting state q, can then be followed by the CRA while simu-
lating the counters.

4.1 Simulation by Z∞-CCRA

Simulation of a single counter Since we are working with a single counter,
we drop the indices of the letters in C1. A single counter c will be simulated
by 3 registers: r+ and r−, carrying the values of c and −c, respectively, and rz
which shall be 0 if each time the letter chk was read, c was 0. If at any time
chk was read while c was nonzero, then rz will be strictly smaller than 0. This
is implemented as follows:

inc :

r
+ ← r+ + 1
r− ← r− − 1
rz ← rz

dec :

r
+ ← r+ − 1
r− ← r− + 1
rz ← rz

chk :

r
+ ← 0
r− ← 0
rz ← min{rz, r+, r−}

Observation 1. If rz becomes strictly smaller than 0, it will stay so after read-
ing any word in (C1)

∗.

Observation 2. Assume r+ = r− = rz = 0. After reading i letters inc and
j letters dec, in any order, then reading a final chk, the new values of the
registers verify:

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

1. If i = j, then r+ = r− = rz = 0;
2. Otherwise rz < 0.

This simulates the original counter in the following sense:

Proposition 4. Let V be a Z-VASSz of dimension 1 and q a state of V. There
is a Z∞-CCRA C such that:

(∀w ∈ (C1)
∗) w ∈ LV,q ⇔ C(w) = 0 .

Proof. Let V = (Q,C1, δ, q0, F) and q ∈ Q. The Z∞-CCRA C with 3 registers is
defined as having (Q,C1, δ, q0, {q}) as the automaton structure, and the updates
are dictated by the letter being read, as defined above. On state q, C outputs
rz. ut

Simulation of multiple counters It is quite straightforward to combine mul-
tiple rz registers into one. Indeed, if k counters are simulated using registers
r+i , r

−
i , and r

z
i , i ∈ [k], then at the end of the simulation, one can set:

flag← min{rz1, rz2, . . . , rzn} ,

so that flag would be 0 iff the execution saw no illegal zero-tests; flag is negative
otherwise.

Proposition 5. Let V be a Z-VASSz of dimension k and q a state of V. There
is a Z∞-CCRA C such that:

(∀w ∈ (Ck)
∗) w ∈ LV,q ⇔ C(w) = 0 .

Remark 1. Here, we were mostly interested in having a specific output if the
simulated execution was correct. If we wanted, by contrast, to output one of the
counters on correct executions, we would need one more idea, that we present
here since it is similar to the techniques of the next section.

Suppose that we wish to output the register r iff flag is 0; recall that flag
may only be 0 or negative. We will do so by repeatedly reading a new letter,
and having r be the only possible even output value, provided flag is 0—no even
value is produced if flag is negative.

We may assume that, by construction, flag is even and r is a multiple of 4;
we further assume that we have a register r

1
2 that contains half of r’s value. We

add the letter z to our alphabet, to be read at the end of the simulation; reading
z increases r

1
2 by 2 and flag by 4. The output value is then set as:

min{r + 1,flag+ 1, r
1
2 } .

Hence the only time an even output is produced is when r
1
2 is minimal. This only

happens when it is equal to r and flag started at 0; for instance, in the following
graphics, r = 4, r

1
2 = 2, and the left-hand side depicts the case flag = 0, while

the right-hand side depicts flag = −2. It can be seen that reading zero or two
z’s in the left-hand picture would make the output be some odd value, while
reading one correctly returns r. In the right-hand picture, reading zero, one, or
two z’s would make the output be some odd value, as claimed.

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

0

1

2

3

4

5

6

7

8

9

z z z

r
1
2

r + 1

flag+ 1

min min min

z z z

r
1
2

r + 1

flag+ 1

min min min

4.2 Simulation by N∞-CCRA

Translating the strategy above to the N setting turns out to be a nontrivial
matter. Indeed, one might expect that it would be enough to increase the updates
so that no negative number appears therein. This would contribute a linear
blowup to the values, but does not seem to change the overall behavior. However,
the resets made while reading chki would have to be equal to that blowup, and
this would require copying.

The simulation will thus follow two phases. First, one that corresponds to
the strategy for Z with the updates tweaked to be positive; second, after reading
a chki, a climb-back phase that puts the registers back in a manageable state
(called “ready” later on). For this latter phase, the N∞-CCRA will read a word
in cb∗i · chkcbi—the letter cb standing for climb-back. Further, combining the
acceptance conditions of multiple counters will also require some new letters; the
alphabet of the automaton is thus:

C ′k = Ck ∪
⋃
i∈[k]

{cbi, chkcbi, zi} .

Simulation of a single counter Again, since we are working with a single
counter, we drop the indices of the letters in C ′1. A single counter in the Z-VASSz
will be simulated by 7 different registers, each with a simple intended meaning:

– r+ and r− should respectively count the number of increments and decre-
ments of the counter;

– ru increases each time the counter is either incremented or decremented; it
counts the number of updates to the counter. The register r

u
2 should be half

of ru;
– rz will be a witness that the chk letter has always been read when the simu-

lated counter was zero, and that the climb-back phases were done correctly;
– Finally, we will need two internal registers rcb and r2cb, used solely in the

climb-back phase.

To simplify the discussion, we give names to some states of the registers:

– They are ready if r+ = r− = rz = r
u
2 = 1

2 × r
u;

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

– They are to-climb if r+ = r− = 0 and rz = r
u
2 = 1

2 × r
u;

– They are dead if rz < r
u
2 .

In the first two states, we also assume that the internal registers rcb and r2cb

are zero.

Goal of the construction. We will show that if the registers are ready and we
read an equal number of inc’s and dec’s followed by a chk, then the registers
become to-climb. There is then a precise number i such that reading cbi ·chkcb
will put the registers back in ready mode. Crucially, if the numbers of inc’s and
dec’s are not equal, or an incorrect number of cb’s is read, then the registers
become dead.

The updates are as follows, where the registers not shown are simply pre-
served. As we saw in Remark 1, we will require that the values of the registers be
divisible by some values, hence rather than incrementing with 1, we increment
by a value e ∈ N (for Einheit, unit) to be determined later. Note that these are
indeed copyless updates.

inc :

r+ ← r+ + e
ru ← ru + e
r

u
2 ← r

u
2 + e

2
rz ← rz + e

2

dec :

r− ← r− + e
ru ← ru + e
r

u
2 ← r

u
2 + e

2
rz ← rz + e

2

chk :

r
+ ← 0
r− ← 0
rz ← min{rz, r+, r−}

cb :

r+ ← r+ + e
r− ← r− + e
r

u
2 ← r

u
2 + e

2
rz ← rz + e

2
rcb ← rcb + e
r2cb ← rcb + 2× e

chkcb :

rcb ← 0
r2cb ← 0
ru ← r2cb

rz ← min{rz, rcb, ru}

Observation 3. If the registers are dead, they will stay so after reading any
word in (C ′1)

∗.

Lemma 1. Assume the registers are ready. After reading i letters inc and j let-
ters dec, in any order, then reading a final chk, the new values of the registers
verify:

1. If i = j, then they are to-climb;
2. Otherwise, they are dead.

Proof. Suppose r+ = r− = rz = r
u
2 = 1

2 × r
u, and let us name that value s.

After reading i letters inc and j letters dec, the new values are:

r+ = s+ e× i, r− = s+ e× j, rz = r
u
2 =

1

2
× ru = s+ e× i+ j

2
.

Now, if i = j then r+ = r− = rz = r
u
2 = 1

2 × r
u, thus reading chk will indeed

make the registers to-climb. Otherwise, one of r+ or r− is smaller than rz, and
reading chk will make the registers dead. ut

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

Lemma 2. Assume the registers are to-climb. After reading cbi · chkcb, the
new values of the registers verify:

1. If i is equal to the starting value of rz multiplied by 2
e , then they are ready;

2. Otherwise, they are dead.

Proof. Suppose r+ = r− = 0 and rz = r
u
2 = 1

2 ×r
u; we name that latter value s.

After reading i letters cb, the new values are:

r+ = r− = rcb =
1

2
× r2cb = e× i, rz = r

u
2 = s+ e× i

2
, ru = 2× s .

Now if i = 2×s
e , then r+ = r− = rcb = 1

2 × r
2cb = rz = r

u
2 = 2 × s. Reading

chkcb thus makes the registers ready. If i is smaller than 2×s
e then rcb < rz;

if it is greater, then ru < rz: in both cases, reading chkcb makes the registers
dead. ut

Simulation of multiple counters We just saw how to simulate a single
counter in the sense that the registers are not dead iff the input word describes
a correct run (i.e., one in which chk is only read if the counter is 0). Let us
now exhibit a method that combines multiple such simulations, and outputs an
even value iff none of the simulations is dead. To do so, we will repeatedly read
new letters z1, z2, . . . , zk at the very end of the execution, in a similar fashion as
Remark 1.

Let us suppose we have k simulated counters, hence k sets of 7 registers. We
will only use rzi , for each i, but we will have one more register in our N∞-CCRA,
named ravg. The purpose of ravg is to hold the average of all the r

u
2
i ; this is easily

achieved by adding to the above updates:

ravg ← ravg +
e

2× k

whenever a r
u
2
i is incremented (always by e

2). Now for each i, the new letter zi
will update the registers with:{

rzi ← rzi +
e
2

ravg ← ravg + e
2×k

The output value of the N∞-CCRA is then set to

min{ravg, rz1 + 1, rz2 + 1, . . . , rzk + 1} . (1)

We further assume that e was chosen so that all the registers are even.
If ravg was the average of the rzi ’s before reading the zi’s—and this only

happens if none of the register set was dead—it will stay so reading zi’s. Conse-
quently, there is a number of each letter zi that can be read so that all the rzi ’s
are equal, making ravg the output value of the N∞-CCRA.

If ravg was greater than the average of the rzi ’s—implying that at least one
set of registers was dead—then ravg will never be the output of the CCRA after
reading zi’s.

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

Theorem 1 (Simulation). Let V be a Z-VASSz of dimension k and q a state
of V. Write h : (C ′k)

∗ → (Ck)
∗ for the function that erases the letters cbi, chkcbi,

and zi. There is a N∞-CCRA C such that for all w ∈ (Ck)
∗:

w ∈ LV,q ⇔ (∃!w′ ∈ h−1(w))[C(w′) is even] .

Proof. The only detail left to deal with is the uniqueness of the w′. We can
certainly make sure that C outputs a value iff the input is of the form:

(inci + deci + chki · cb∗i · chkcbi)
∗
i · (zi)∗i ,

but even if the first half (without the zi’s) is indeed unique, as per Lemma 2, the
zi’s need not be so. To preserve uniqueness, this latter part should be replaced
by: ⋃

i∈[k]

∏
j∈[k]\{i}

(zj)
∗ .

This serves two purposes: first, the order on the zi’s is fixed; second, one of the
zj will not be used, hence the condition that all the rzi be equal will only be
verified when they are all valued rzj . Naturally, only one such j exists, it is simply
the index of the maximum rzi . ut

5 Applications

We draw a number of undecidability results as a consequence of the construction
of the previous section.

Theorem 2 (Equivalence). The following problem is undecidable:
Given: Two N∞-CCRA C and C′ over A∗
Question: (∀w ∈ A∗)[C(w) = C′(w)]

Proof. Let V be a Z-VASSz and q a state of V, and consider the N∞-CCRA
C that simulates LV,q. We reduce deciding if that language is empty (which is
undecidable by Proposition 1) to the problem at hand. Equation (1), defining
the output of C, is such that ravg is the minimum iff the execution was correct.
Thus replacing this output function by:

min{rz1 + 1, rz2 + 1, . . . , rzk + 1}

changes the output value of a word iff it was a correct run. Calling C′ this
modified version, it holds that (∀w ∈ A∗)[C(w) = C′(w)] iff LV,q = ∅. ut

Clearly, it is undecidable whether the image of a N∞-CCRA is always odd.
Further:

Theorem 3 (Semilinearity). The following problem is undecidable:
Given: A N∞-CCRA C over A∗
Question: Is C(A∗) semilinear, i.e., an eventually periodic set?

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

Proof. We provide an independent construction which bears some similarities
with the “climb-back” method. It doubles a register r in the following sense: if r
is a register with starting value s, then reading incs/2 · chk doubles the value of
r; if any other number of inc’s is read (which happens in particular when s is
odd), the new value of r will be some odd number.

Consider a register r with initial value s, and suppose we have an additional
register r′ holding 2× s. We introduce two new registers, rcb and r2cb initialized
with 0. Upon reading a word cbi · chkcb, we apply the updates:

cb :

r ← r + 2
rcb ← rcb + 4
r2cb ← r2cb + 8

chkcb :

rcb ← 0
r2cb ← 0
r′ ← r2cb

r ← min{r, r′ + 1, rcb + 1}

After reading cbi, it holds that r = s+ 2× i, rcb = 4× i, and r2cb = 8× i.
If i = s

2 , then r = rcb = r′ = 2 × s, hence after reading chkcb, we have
indeed r = r′

2 = 2 × s, and the extra registers are reset: we are back to our
starting hypothesis.

If i 6= s
2 , then either r′ < r (when i > s

2) or rcb < r (when i < s
2). In both

cases, after reading chkcb, r becomes odd, and will stay so after reading any
other word.

As a side note, consider the N∞-CCRA with the above updates and r ini-
tialized to 2, that reads words in (cb∗ · chkcb)∗. Then the only even outputs of
this machine are the powers of two, a nonsemilinear set.

This concludes the construction, and we now present the reduction.
Let V be a Z-VASSz and q a state of V, and consider the N∞-CCRA C that

simulates LV,q. We assume that |LV,q| ≤ 1, and again reduce deciding LV,q = ∅
to the problem at hand.

First we note that we may assume that C outputs all the odd numbers, for
instance by adding a letter ` and, upon reading `n, outputing 2 × n + 1. Also
recall that if LV,q is nonempty, then there is a unique w such that C(w) is even.

We now modify C into C′ to incorporate the above machinery. We simply
store in a new register r the output value of C, and proceed by reading words
of the form cbi · chkcb with the updates as above. If LV,q = ∅, then C′((C ′k)∗)
is all the odd numbers, a semilinear set. Otherwise, there is one (and only one)
even value s in the image of C, and it holds that:

C′((C ′k)∗) = (2N+ 1) ∪ {2i × s | i ≥ 0} ,

a nonsemilinear set. ut

Theorem 4 (Upperboundedness). The following problem is undecidable:
Given: A Z∞-WA A over A∗
Question: (∃c ∈ Z)(∀w ∈ A∗)[A(w) ≤ c]

Proof. Let V be a Z-VASSz and q a state of V, and consider the Z∞-CCRA C
that simulates LV,q. Relying on Proposition 2, let W be a Z∞-WA equivalent to

DRAFT (rev: 1361, comp. on: 12-04-18, 13:39:32)

C. Tweak W to output the same as C plus one, hence W(w) is 1 iff w ∈ LV,q.
Now let W ′ be W with an added letter # that jumps from the final states of W
to the its initial states; formally, let W = (A, λ, µ, ν) with A = (Q,A, δ, q0, F),
then W ′ is (A′, λ, µ′, ν) where A′ = (Q,A] {#}, δ ∪ {(q,#, q0) | q ∈ F}, q0, F),
and µ′ agrees with µ on δ and is extended by µ(q,#, q0) = ν(q) + λ.

In essence, W ′ is iterating W:

W ′(w1#w2# · · ·#wk) =
∑
i∈[k]

W(wi) .

From this, we see that ifW is always negative or zero,W ′ is bounded, otherwise,
if W(w) = 1, then W ′((w#)c · w) = c+ 1, hence W ′ is unbounded. ut

6 Conclusion

Open: Upperboundedness of Z∞-CCRA; characterizing linearly ambiguous.

References

1. Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted
automata? In Automated Technology for Verification and Analysis, 9th International
Symposium, ATVA 2011, Taipei, Taiwan, October 11-14, 2011. Proceedings, pages
482–491, 2011. doi:10.1007/978-3-642-24372-1_37.

2. Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman,
and Yifei Yuan. Regular functions and cost register automata. In 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans,
LA, USA, June 25-28, 2013, pages 13–22, 2013. doi:10.1109/LICS.2013.65.

3. Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained
automata. Int. J. Found. Comput. Sci., 24(7):1099–1116, 2013. doi:10.1142/
S0129054113400339.

4. Stéphane Gaubert and Ricardo Katz. Rational semimodules over the max-plus
semiring and geometric approach to discrete event systems. Kybernetika, 40(2):153–
180, 2004.

5. Filip Mazowiecki and Cristian Riveros. Copyless cost-register automata: Structure,
expressiveness, and closure properties. In 33rd Symposium on Theoretical Aspects
of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, pages
53:1–53:13, 2016. doi:10.4230/LIPIcs.STACS.2016.53.

6. Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other
topics in theory of Turing machines. Annals of Mathematics, 74(3):pp. 437–455,
1961.

7. Mojzesz Presburger. Über de vollständigkeit eines gewissen systems der arithmetik
ganzer zahlen, in welchen, die addition als einzige operation hervortritt. In Comptes
Rendus du Premier Congrès des Mathématiciens des Pays Slaves, pages 92–101,
Warsaw, 1927.

