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Abstract11

We study the language universality problem for One-Counter Nets, also known as 1-dimensional12

Vector Addition Systems with States (1-VASS), parameterized either with an initial counter value,13

or with an upper bound on the allowed counter value during runs. The language accepted by an14

OCN (defined by reaching a final control state) is monotone in both parameters. This yields two15

natural questions: 1) does there exist an initial counter value that makes the language universal? 2)16

does there exist a sufficiently high ceiling so that the bounded language is universal?17

Despite the fact that unparameterized universality is Ackermann-complete and that these18

problems seem to reduce to checking basic structural properties of the underlying automaton, we19

show that in fact both problems are undecidable.20

We also look into the complexities of the problems for several decidable subclasses, namely for21

unambiguous, and deterministic systems, and for those over a single-letter alphabet.22
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1 Introduction29

One-Counter Nets (OCNs) are finite-state machines equipped with an integer counter that30

cannot decrease below zero and which cannot be explicitly tested for zero. They are the31

same as 1-dimensional Vector Addition Systems (or Petri nets with exactly one unbounded32

place). In order to use them as formal language acceptors we assume that transitions are33

labelled with letters from a finite alphabet and that some states are marked as accepting.34

OCNs are a syntactic restriction of One-Counter Automata – Minsky Machines with35

only one counter, which can have zero-tests, i.e., transitions that depend on the counter36

value being exactly zero. If counter updates are restricted to ±1, the model corresponds to37

Pushdown automata with a single-letter stack alphabet. OCNs are one of the simplest types38

of discrete infinite-state systems, which makes them suitable for exploring the decidability39

border of classical decision problems from automata and formal-language theory.40

Universality Problems. The universality problem for a class of automata asks if a given41

automaton accepts all words over its input alphabet. Due to their lack of an explicit42
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zero-test, OCNs are monotone with respect to counter values: if it is possible to make an43

a-labelled step from a configuration with state p and counter n to state q with counter n+ d,44

written as (p, n) a−→ (q, n+ d) here, then the same holds for any larger counter value m ≥ n:45

(p,m) a−→ (q,m+ d). Consequently, if we define the language via acceptance by reaching a46

final control state, then for all states s and n ≤ m ∈ N, the language L(s, n) of the initial47

configuration (s, n) is included in that of (s,m). This motivates the our first variation of the48

universality problem. The Initial-Value Universality problem asks if there exists a sufficiently49

large initial counter to make the resulting language universal.50

Input: An OCN with alphabet Σ and an initial state s0.
Question: Does there exist c0 ∈ N such that L(s0, c0) = Σ∗?

51

The next question we consider is the Bounded Universality problem, which asks if there52

exists a large enough upper bound on the counter so that every word can be accepted via a53

run that remains within this bound. Writing L≤b(s0, c0) ⊆ Σ∗ for the b-bounded language54

from configuration (s0, c0), the decision problem is as follows.55

Input: An OCN with alphabet Σ, an initial state s0, and c0 ∈ N.
Question: Does there exist b ∈ N such that L≤b(s0, c0) = Σ∗?

56

The motivation for studying these parameterized problems comes from the observation57

that the “vanilla” universality problem, without existentially quantifying over parameters,58

is decidable, but Ackermann-complete [16], and the lower bound depends strongly on the59

assumption that we start with a fixed initial counter (and that its value is not bounded).60

The two new variants of the universality problem relax these assumptions in an attempt to61

allow efficient decision procedures via simple cycle analysis or similar.62

Our Results. We show that both initial-value universality and bounded universality are63

undecidable (Section 3). The proofs use techniques from weighted automata [13, 5], reducing64

the halting problem of two-counter machines to our setting. In a nutshell, the idea (for65

e.g., initial-value universality) is to construct, given a two-counter machine M, an OCN66

that reads encodings of runs of M. Then, the OCN checks whether the encoding indeed67

represents a prefix of the run ofM. If it does not, the word is accepted. Otherwise, if the68

prefix becomes too long (depending on the initial value), the counter of the OCN becomes69

negative, and the word is not accepted. Thus, ifM halts, then there exists a large enough70

initial value (namely larger than the length ofM’s run) for which every word is accepted,71

and ifM does not halt, then a long enough prefix of its run will be rejected.72

In light of these negative results, we proceed to study restricted classes of OCNs, for which73

the problems become decidable, as we elaborate below. In most cases, the complexity crucially74

depends on how transition updates are encoded: we consider both the case of “succinct”,75

binary-encoded updates, and the case of unary-encoded updates, which corresponds to76

systems where transitions can only update the counter by ±1.77

The most intricate and interesting case is that of OCNs over a single-letter alphabet78

(Section 4). In order to analyze this model, we split universality to criteria on “short” words,79

and on longer words that admit a cyclic behavior. In particular, we devise a canonical80

representation of “pumpable” paths, akin to the so-called linear-path schemes [19, 7]. We81

show that the complexity of some of the problems is coNP complete, where others range82

between coNP and coNPNP (see Tables 1 and 2).83

We then consider deterministic, and unambiguous OCNs (Sections 5 and 6, respectively).84

For such systems, deciding (bounded) universality problems mostly reduces to checking85
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Table 1 The complexity of the universality problems of one-counter nets in which weights are
encoded in unary.

Unary
encoding

Universality Initial-Value Universality Bounded Universality
Singleton
Alphabet

General
Alphabet

Singleton
Alphabet

General
Alphabet

Singleton
Alphabet

General
Alphabet

Deterministic L
Theorem 28

NL-comp.
Theorem 26

L
Theorem 28

NL-comp.
Theorem 26

L
Theorem 28

NL-comp.
Theorem 26

Unambiguous NL
Theorem 31

NC2; [12]
NL-hard

NL
Theorem 34

NC2

Theorem 34
NL

Theorem 36
NC2

Theorem 36
Non-

deterministic
coNP-comp.
Theorem 10

Ackermann
[16]

coNP-comp.
Theorem 15

Undecidable
Theorem 1

coNP-comp.
Theorem 22

Undecidable
Theorem 2

Table 2 The complexity of the bounded universality problems of one-counter nets in which
weights are encoded in binary.

Binary
encoding

Universality Initial-Value Universality Bounded Universality
Singleton
Alphabet

General
Alphabet

Singleton
Alphabet

General
Alphabet

Singleton
Alphabet

General
Alphabet

Deterministic NC2

Theorem 28
NC

Theorem 26
NC2

Theorem 28
NC2

Theorem 34
NC2

Theorem 28
NC

Theorem 26

Unambiguous coNP-comp.
Theorem 12

PSPACE; [12]
coNP-hard

NC2

Theorem 34
NC2

Theorem 34
coNPNP

Theorem 22
PSPACE

Theorem 36
Non-

deterministic
coNPNP

Theorem 12
Ackermann

[16]
coNP-comp.
Theorem 15

Undecidable
Theorem 1

coNPNP

Theorem 22
Undecidable
Theorem 2

simple conditions on the cyclic structure of the control automaton underlying the OCN.86

Based on known (but in some cases very recent) results on unambiguous finite automata and87

vector-addition systems, we derive relatively low complexity upper bounds, in polynomial88

time (assuming unary encoding) and space (assuming binary encoding). Tables 1 and 289

summarize the status quo, following our results.90

Related work. The undecidability of language universality for pushdown automata is91

textbook. In his 1973 PhD thesis [25], Valiant showed that the problem remains undecidable92

for the strictly weaker model of one-counter automata (OCA, with zero tests) by recognizing93

the complement of all accepting runs of a two-counter machine. Language inclusion is94

undecidable for the further restricted model of OCNs [15]. If one considers ω-regular95

languages defined by OCNs with Büchi acceptance condition then the resulting universality96

problem is undecidable [8].97

On the positive side, universality is decidable for vector addition systems [17] and98

Ackermann-complete for the special case of OCNs [16]. One-counter systems have received99

some attention in regards to checking bisimulation and simulation relations, which under-100

approximate language equivalence (and inclusion, respectively) and are computationally101

simpler. For OCAs/OCNs, bisimulation is PSPACE-complete [9], while weak bisimulation102

is undecidable for OCNs [20]. Both strong and weak simulation are PSPACE-complete for103

OCNs, and checking if an OCN simulates an OCA is decidable [1].104

Universality problems for OCNs over single-letter alphabets are related to the termination105

problem for VASS, which asks if there exists an infinite run. Non-termination naturally106
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corresponds to the property that an ∈ L(s0,v0), i.e., all finite words are accepted, assuming107

that all states are accepting. Termination reduces to boundedness (finiteness of the reachab-108

ility set) which is EXPSPACE-complete [22, 14] in general and PSPACE-complete for systems109

with fixed dimensions [23]. In contrast, the structural termination problem (there exists no110

infinite run, regardless of the initial configuration) is equivalent to finding an executable111

cycle that is non-decreasing on all dimensions, and can be solved in polynomial time [18].112

Finally, the idea to existentially quantify over some initial resource is commonplace in the113

formal verification literature. Examples include unknown initial-credit problems for energy114

games [10, 1] and R-Automata [3], timed Petri nets [2], and inclusion problems for weighted115

automata [13, 5].116

Due to space constraints, most proofs appear in the Appendix.117

2 Preliminaries118

One-Counter Nets. A one-counter net (OCN) is a finite directed graph where edges carry119

both an integer weight and a letter from a finite alphabet. We write A = (Σ, Q, s0, δ, F) for120

the net A where Q is a finite set of states, Σ is a finite set of letters, s0 ∈ Q is an initial121

state, δ ⊆ Q × Σ × Z×Q is the transition relation, and F ⊆ Q are the accepting states.122

For a transition t = (s, a, e, s′) ∈ δ we write effect(t) def= e for its (counter) effect, and123

write ‖δ‖ for the largest absolute effect among all transitions. By the underlying automaton124

of an OCN we mean the NFA obtained from the OCN by disregarding the transition effects.125

A path in the OCN is a sequence π = (s1, a1, e1, s2)(s2, a2, e2, s3) . . . (sk, ak, ek, sk+1) ∈ δ∗.126

Such a path π is a cycle if s1 = sk+1, and is a simple cycle if no other cycle is a proper infix127

of it. We say that the path above reads word a1a2 . . . ak ∈ Σ∗ and is accepting if sk+1 ∈ F.128

Its effect(π) def=
∑k
i=1 ei is the sum of its transition effects . Its height is the maximal effect129

of any prefix and, similarly, its depth is the inverse of the minimal effect of any prefix.130

An OCN naturally induces an infinite-state labelled transition system in which each
configuration is a pair (s, c) ∈ Q × N comprising a state and a non-negative integer. We call
such a configuration final, or accepting, if s ∈ F . Every letter a ∈ Σ induces a step relation
a−→ ⊆ (Q× N)2 between configurations where, for every two configurations (s, c) and (s′, c′),

(s, c) a−→ (s′, c′) ⇐⇒ (s, a, d, s′) ∈ δ and c′ = c+ d.

A run on a word w = a1a2 . . . ak ∈ Σ∗ is a path in this induced infinite system; that is, a131

sequence ρ = (s0, c0), (s1, c1), (s2, c2), . . . (sk, ck) such that (si−1, ci−1) ai−→ (si, ci) holds for132

all 1 ≤ i ≤ k. Naturally, a run uniquely describes a path in the underlying finite OCN.133

Conversely, for every such path and initial counter value c0, there is at most one corresponding134

run: A path π is executable from c0 if its depth is at most c0 (that is, we do not allow the135

counter to become negative). A run as above is called a (simple) cycle if its underlying path136

is a (simple) cycle. It is accepting if it ends in an accepting configuration. We call a run137

bounded by b ∈ N if ci ≤ b for all 0 ≤ i ≤ k.138

For any fixed initial configuration (s, c), we define its language LA(s, c) ⊆ Σ∗ to contain139

exactly all words on which an accepting run starting in (s, c) exists. (We omit the subscript140

A if the OCN is clear from context.) Similarly, the b-bounded language L≤b(s, c) is the set of141

those words on which there is a b-bounded run starting in (s, c).142

The OCN is deterministic if for every pair (s, a) ∈ Q × Σ there is at most one pair143

(d, q) ∈ N × Q with (s, a, d, s′) ∈ δ. A net as above together with an initial configuration144

(s0, c0) is unambiguous if for every word w ∈ Σ∗ there is at most one accepting run starting145

in (s0, c0).146



S. Almagor, U. Boker, P. Hofman, P. Totzke 5

A:

Σ \ {‘inc x’, ‘dec x’, ‘x=0 then goto’, ‘halt’, #}, 0 Σ \ {#},−1

0

q5 and q6 are identical to q3 and q4,

0

‘dec x’, −1

q6

q0

q3

‘x=0 then goto’

q4

‘x>0 then goto’

‘dec x’, +1
‘inc x’, −1

Σ \ {‘inc x’, ‘dec x’, ‘x>0 then goto’, ‘halt’, #}, 0

#, 0−1

Σ \ {#}, 0
#, 00

‘inc x’, +1 q1
Σ, 0

heaven

q5

respectively, but with respect to y

q2 Command
Checker

#, 0 non-counting

#,−1

violation

Figure 1 The one-counter net A from the proof of Theorem 1.

Two-Counter Machines. A two-counter machine (Minsky Machine) M is a sequence147

(l1, . . . , ln) of commands involving two counters x and y. We refer to {1, . . . , n} as the148

locations of the machine. There are five possible forms of commands: inc(c), dec(c), goto149

li, halt, if c=0 goto li else goto lj , where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are150

locations. The counters are initially set to 0. Since we can always check whether c = 0 before151

a dec(c) command, we assume that the machine never reaches dec(c) with c = 0. That is,152

the counters never have negative values.153

3 Undecidability154

We show that both initial-value universality and bounded universality are undecidable155

by reduction from the halting problem of two-counter machines, which is known to be156

undecidable [21]. The proofs use techniques similar to those used in [13] and [5].157

The idea underlying both undecidability results is that the initial counter value, or the158

bound on the allowed counter, prescribes a bound on the number of steps until the OCN159

must make a decision weather the input word, which encodes a run of the two-counter160

machine, either halts or cheats. After this decision the OCN is reset and continues to read161

the remaining word within an adjusted bound. If the decision was correct then the bound162

remains the same and otherwise, it is strictly reduced. The existence of a halting run of the163

two-counter machine now implies that its length corresponds to a sufficient initial bound for164

this simulating OCN to be universal. In particular, if the run of the machine does not halt165

then for every bound – after which the OCN must declare termination or cheat – there exists166

a non-cheating, and non-terminating prefix run. Repeating this prefix n times witnesses167

non-universality for the simulating OCN.168

3.1 Initial-Value Universality169

Given a two-counter machineM, we construct a one-counter net A as follows (see Figure 1).170

Intuitively, an input word w to A is a sequence of segments separated by #, where each171

segment is a sequence of commands fromM. Accordingly, the alphabet of A consists of #172

and all possible commands ofM.173

We build A to accept w, once starting with a big enough initial counter value, if one174

of the following conditions hold: i) one of w’s segments is shorter than the length of the175

(legal halting) run ofM; or ii) one of w’s segments does not respect the control structure176

underlyingM, which is called a “non-counting cheat” here; or iii) all of w’s segments do not177
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describe a prefix of the run ofM, making “counting cheats”. The OCN reads every segment178

in between two #’s starting in, and returning to, a central state q0.179

Non-counting cheats are easy to verify—for every line l ofM, there is a corresponding180

state q in A, and when A is at state q and reads a letter a, A checks if a matches the181

command in l. For example, if l =‘goto i’ and a = ‘inc x’, the transition from q goes182

to a forever accepting state (heaven), and if a =‘goto i’, it goes to the state of A that183

corresponds to the line li. This is the “command-checker gadget” of A.184

Counting cheats are more challenging to verify, as OCNs cannot branch according to a185

counter value. We consider separately “positive cheats” and “negative cheats”. The former186

stands for the case that the input letter is ‘x=0 then goto’ (or ‘y=0 then goto’) while the187

value of x (or y) in the legal run ofM should be positive. The latter stands for the case188

that the input letter is ‘x>0 then goto’ (or ‘y>0 then goto’) while the value of x (or y) in189

the legal run ofM should be 0.190

Positive cheats can be verified by directly simulating the respective counter ofM using191

the counter in A (states q3 and q5 in Figure 1). Once the cheat occurs, A can return to q0192

with a penalty of −1, and since the counter inM is positive, we are guaranteed that the193

counter in A did not decrease since leaving q0, allowing A to continue the run.194

For verifying a negative cheat, we simulate the counting ofM by an “opposite-counting”195

in A (states q4 and q6 in Figure 1), whereby an increment of the counter inM results in a196

decrement of the counter in A, and vice versa—once the cheat occurs, A can return to q0197

with no penalty, and since the counter inM is 0, we are guaranteed that the counter in A198

did not decrease since leaving q0, allowing A to continue the run.199

Formally, we construct A fromM as follows.200

The alphabet Σ of A consists of # and the descriptive commands for the counter201

machineM : ‘inc x’, ‘inc y’, ‘dec x’, ‘dec y’, ‘halt’, and for every line i ofM, the202

commands ‘goto i’, ‘x=0 then goto i’, ‘y=0 then goto i’, ‘x>0 then goto i’, and203

‘y>0 then goto i’.204

The initial state q0 is accepting, it has a self transition over Σ \ {#} and nondeterministic205

transitions to the states q1 . . . q6 over #, all with weight 0.206

There is a heaven state, which is accepting, and has a self loop over Σ with weight 0.207

The state q1 is accepting and intuitively allows to accept short segments between con-208

sequent #’s: It has a self transition over Σ \ {#} and a transition to heaven over #, all209

with weight −1.210

The state q2 starts the command-checker gadget, which looks for a non-counting violation211

ofM’s commands (which is a simple regular check). Once reaching a violation it goes to212

heaven. All of its transitions are with weight 0. If it does not find a violation, it cannot213

continue the run.214

The state q3 is a positive-cheat checker for M’s counter x. It has a self loop over215

‘inc x’ with weight +1 and over ‘dec x’ with weight −1. Over ‘x=0 then goto’ it can216

nondeterministically choose between a self loop with weight 0 and a transition to q0 with217

weight −1. Over the rest of the alphabet lettres, except for ‘halt’ and #, it has a self218

loop with weight 0. (Over ‘halt’ and # it cannot continue the run.)219

The state q4 is a negative-cheat checker for M’s counter x. It has a self loop over220

‘inc x’ with weight −1 and over ‘dec x’ with weight +1. Over ‘x>0 then goto’ it can221

nondeterministically choose between a self loop with weight 0 and a transition to q0 with222

weight 0. Over the rest of the alphabet lettres, except for ‘halt’ and #, it has a self loop223

with weight 0.224
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A′:

.

q′
0 Σ, 0

q7

q0

Σ \ {#}, 0

q6

The transitions of q1..q6 are as in A.

Σ,−1

#, 0

Σ,−1

q1

Σ,+1

#, 0 .

Figure 2 The one-counter net A′ from the proof of Theorem 2.

The states q5 and q6 provide positive-cheat checker and negative-cheat checker forM’s225

counter y, respectively, analogously to states q3 and q4.226

We can show (see Appendix A) thatM halts if and only if A is initial-value universal.227

I Theorem 1. The initial-value universality problem for one-counter nets is undecidable.228

3.2 Bounded Universality229

We show that the problem is undecidable by making some changes to the undecidability230

proof of the initial-value universality problem.231

Given a two-counter machineM, we construct a one-counter net A′ that is similar to A,232

as constructed above, except for the following changes (see Figure 2):233

There is an additional state q′0 that is accepting, it is the new initial state, and it has a234

nondeterministic choice over Σ of either taking a self loop with weight +1 or going to q0235

with weight 0.236

The state q0 is no longer initial, and it has an additional transition over # to a new state237

q7 with weight 0.238

The state q7 is accepting, and it has nondeterministic choice over Σ of either taking a self239

loop with weight −1 or going to q0 with weight −1.240

NowM halts if and only if A′ is bounded universal for an initial counter value 0.241

I Theorem 2. The bounded universality problem for one-counter nets is undecidable.242

4 Singleton Alphabet243

In this section we study universality problems on OCN over singleton alphabets. The244

universality problem for NFA over singleton alphabets is already coNP-hard [24], a lower245

bound which trivially carries over to all problems considered here1.246

For simplicity, we identify languages L ⊆ {a}∗ with their Parikh image, so that the247

universality problems ask if the (bounded) language of a given OCN equals N. Throughout248

this section, fix an OCN A = (Σ, Q, s0, δ, F).249

We start by sketching our approach. Observe that the language of an OCN is not universal250

iff the OCN does not accept some word w. To show that such w exists, we distinguish251

between two cases: either w is “relatively short”, in which case we use a guess-and-check252

1 The proof in [24, Theorem 6.1] in fact shows NP-completeness of the problem of whether two regular
expressions over {0} define different languages. Hardness is shown by reduction from Boolean satisfiability
to non-universality of expressions using prime-cycles, and it is straightforward to rephrase it in terms of
DFAs.
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approach to find it, or it is long, in which case we deduce its existence by analyzing some253

cyclic behaviour of the OCN. The details of both the guess-and-check elements and the cyclic254

behaviour depend on the encoding of the weights and the variant of universality.255

4.1 Universality256

We start by describing a procedure to decide the ordinary universality problem for OCN over257

singleton alphabets – with fixed initial configuration and no bounds on the counter.258

Consider a cycle γ = s1, s2, . . . , sk (with s1 = sk). Recall that effect(γ) is the sum of259

weights along γ and depth(γ) is the inverse of the lowest effect along the prefixes of γ. We260

call 1 ≤ d ≤ k a nadir of γ if it is the index of a prefix that attains the depth of γ. That is,261

effect(s1, . . . , sd) = −depth(γ). We say that γ is positive if effect(γ) is positive (and similarly262

for negative, non-negative, zero, etc.). We call γ good if it a simple, non-negative cycle, and263

depth(γ) = 0.264

I Observation 3. If γ is non-negative and it has a nadir d, then the shifted cycle γ←d def=265

sd sd+1, · · · , sk, s2, · · · , sd is good. Similarly, if γ is negative, then effect(γ←d) = −depth(γ←d).266

For a state r ∈ Q and an initial configuration s0, c0, let Lr(s0, c0) ⊆ L(s0, c0) be the267

language of words accepted by a run that visits r.268

The first tool we use in studying the universality problem is a canonical form for accepting269

runs, akin to linear path schemes of [19, 7].270

I Definition 4 (Linear Forms). A path π is in linear form if there exist simple cycles γ1, . . . , γk271

and paths τ0, . . . , τk such that π = τ0γ
e1
1 τ1 · · · τk−1γ

ek

k τk for some numbers e1, . . . , ek ∈ N,272

and such that every non-negative cycle γi, is taken from a nadir, and so is executable with273

any counter value.274

We call ei the exponent of γi, and we refer to τ0γ1τ1 . . . γkτk as the underlying path of275

π. The length of the linear form is the length of the underlying path.276

A linear form is described by the components above, where the exponents are given in277

binary. In the following, we show that every path can be transformed to a path in linear278

form with a small description size.279

I Lemma 5. Let π be an executable path of length n from (p, c) to (q, c′). Then there exists280

an executable path π′ of length n in linear form whose length is at most 2|Q|2, from (p, c) to281

(q, c′′) with c′′ ≥ c′.282

Proof Sketch: π′ is obtained from π in two steps, namely rearranging simple cycles, and283

then choosing a small set of “representative” simple cycles to replace others. The crux of284

the proof is the first step, where instead of simply moving a cycle, we also shift it so that it285

is taken from its nadir. Then, for every set of simple cycles of the same length and on the286

same state, we take the one with maximal effect as a representative. J287

We now turn to identify states that have a special significance in analyzing universality.288

I Definition 6. Let Pump ⊆ Q be the set of states that admit good cycles. For each such289

state r fix a shortest good cycle γr.290

Intuitively, a state r is in Pump if it has a cycle that can be taken with any counter value,291

any number of times. That is, it can be used to “pump” the length of the word. Another292

important property is that if a path never visits a state in Pump then all its simple cycles293
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must be negative. Indeed, any non-negative cycle must contain a non-negative simple cycle294

and any state at a nadir of such cycle must be in Pump.295

If however, a state in Pump occurs along an accepting run, we can accept the same word296

using a run in a short linear form, as we now show.297

I Lemma 7. There exists a bound B1 ∈ poly(|Q|, ‖δ‖) such that, for every n ∈ N, if n is298

accepted by a run that visits a state r ∈ Pump, then n has an accepting run of the form299

η1γ
t
rη2 for paths η1, η2 of length at most B1.300

Proof Sketch: Using Lemma 5, we split an accepting run on n that visits r to the form301

π1, r, π2 where π1 and π2 are in linear form. Then, we successively shorten π1 and π2 by302

eliminating simple cycles along them, and instead pumping the non-negative cycle γr. Some303

careful accounting is needed so that the length of the path is maintained, and so that it304

remains executable. J305

We now characterize the regular language Lr(s0, c0) using a DFA of bounded size.306

I Lemma 8. There exists a bound B2 ∈ poly(‖δ‖ · |Q|) such that, for every r ∈ Pump, there307

exists a DFA that accepts Lr(s0, c0) and is of size at most B2.308

Define P def=
⋃
r∈Pump Lr(s0, c0). Notice that P ⊆ L(s0, c0) and that L(s0, c0) \ P must309

be finite. Indeed, if w ∈ L(s0, c0) \P then it can only be accepted by runs with only negative310

cycles, of which there are finitely many. In particular, if N \ P is infinite, then L(s0, c0) 6= N.311

Using the bounds from Lemma 8, we have the following.312

I Lemma 9. There exists B3 ∈ poly(‖δ‖, |Q|) such that L(s0, c0) 6= N if, and only if, there313

exists n ∈ N such that either n < B2 and n /∈ L(s0, c0), or B|Q|3 ≤ n ≤ 2B|Q|3 and n /∈ P.314

Lemma 9 suggests the following algorithmic scheme for deciding non-universality: non-315

deterministically either (1) guess n < B3, and check that n /∈ L(s0, c0), or (2) guess316

B
|Q|
3 ≤ n ≤ 2B|Q|3 and check that n /∈ Lr(s0, c0) for all r ∈ Pump, which implies that n /∈ P .317

Note that even if the transitions are encoded in unary, n still needs to be guessed in318

binary for part (2) (and also for part (1) if the encoding is binary). The complexity of the319

checks involved in both parts of the algorithm depend on the encoding of the transitions,320

and are handled separately in the following.321

Unary Encoding. If the transitions are encoded in unary, then B3 is polynomial in the size322

of the OCN. Consequently, we can check for n < B3 whether n ∈ L(s0, c0) by simulating the323

OCN for n steps, while keeping track of the maximal run to each state. Indeed, due to the324

monotonicity of executability of OCN paths it suffices to remember, for each state s, the325

maximal possible counter-value c so that (s, c) is reachable via the current prefix, which must326

be a number ≤ c0 + n · ‖δ‖ or −∞ (to represent that no configuration (s, c) can be reached).327

Next, in order to check whether n /∈ Lr(s0, c0) for all r ∈ Pump for B|Q|3 ≤ n ≤ 2B|Q|3328

written in binary, we notice that since B3 is polynomial in the description of the OCN, then329

the size of each DFA for Lr(s0, c0) constructed as per Lemma 8 is polynomial in the OCN.330

Since the proof in Lemma 8 is constructive, we can obtain an explicit representation of these331

DFAs. Finally, given a DFA (or indeed, and NFA) over a singleton alphabet and n written332

in binary, we can check whether n is accepted in time O(logn) by repeated squaring of the333

transition matrix for the DFA [24]. We conclude with the following.334

I Theorem 10. The universality problem for singleton-alphabet one-counter nets with trans-335

itions encoded in unary is in coNP, and is thus coNP-complete.336
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Binary Encoding. When the transitions are encoded in binary, B3 is potentially exponential337

in the encoding of the OCN. Thus, naively adapting the methods taken in the unary case338

(with basic optimization) will lead to a PSPACE algorithm for universality (using Savitch’s339

Theorem). As we now show, by taking a different approach, we can obtain an upper bound340

of coNPNP, placing the problem in the second level of the polynomial hierarchy.341

In order to obtain this bound, we essentially show that given n encoded in binary, checking342

whether n is accepted by the OCN can be done in NP. This is based on the linear form of343

Lemma 5.344

I Lemma 11. Let π = τ0γ
e1
1 τ1 · · · τk−1γ

ek

k τk be a run in linear form, then we can check345

whether π is executable from counter value c in time polynomial in the description of π.346

Lemma 11 shows that, given n in binary, we can check whether n ∈ L(s0, c0) in NP.347

Indeed, we guess the structure of an accepting run in linear form (including the exponents of348

the cycles), and check in polynomial time whether this run is executable, and whether it is349

accepting.350

In order to complete our algorithmic scheme for universality, it remains to show how we351

can check in NP, given n in binary, whether n /∈ Lr(s0, c0) for every r. In contrast to the352

case of unary encoding, this is fairly simple.353

Given r, we can construct an OCN Ar such that LAr (s0, c0) = LrA(s0, c0) by taking354

two copies of A, and allowing a transition to the second copy only once r is reached. The355

accepting states are then those of the second copy. Thus, checking whether n /∈ Lr(s0, c0)356

amounts to checking whether n /∈ LAr (s0, c0). We can now complete the algorithmic scheme.357

358

I Theorem 12. The universality problem for singleton-alphabet one-counter nets with trans-359

itions encoded in binary is in coNPNP.360

4.2 Initial-Value Universality361

The characterization of universality given in Lemma 9 can be simplified in the case of362

initial-value universality, in the sense that the freedom in choosing an initial value allows us363

to work with the underlying automaton of the OCN, disregarding the transition effects. This364

also allows us to obtain the same complexity results under unary and binary encodings.365

Recall that Pump is the set of states that admit good cycles (see Definition 6). Let N366

be the underlying NFA of A. For a state r ∈ Pump, define LrN (s0) to be the set of words367

accepted by N via a run that visits r. Overloading the notation of Section 4.1, we define368

P def=
⋃
r∈Pump LrN (s0).369

I Lemma 13. There exists c0 such that LA(s0, c0) = N iff LN (s0) = N and N \ P is finite.370

Following similar arguments to those in Lemmas 7 and 8, and using the fact that we371

work with the underlying NFA, we can show the following.372

I Lemma 14. There exists a bound B4 ∈ poly(|Q|) such that, for every r ∈ Pump there373

exists a DFA that accepts Lr(s0) and which is of size at most B4.374

We can now solve the initial-value universality problem.375

I Theorem 15. The initial-value universality problem for one-counter nets (in unary or376

binary encoding) is coNP-complete.377
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Proof. First, observe that the problem is coNP-hard by reduction from the universality378

problem for NFAs. We now turn to show the upper bound.379

By Lemma 13, it is enough to decide whether LN (s0) = N and N \ P is finite. Checking380

whether LN (s0) = N, i.e., deciding the universality problem for NFA over a single-letter381

alphabet, can be done in coNP [24].382

By Lemma 14, there exists a DFA D for N \ P of size at most M = B
|Q|
4 , by taking the383

intersection of the respective DFAs over every r ∈ Pump. Thus, N \P is infinite iff D accepts384

a word of length M < n ≤ 2M (as such a word induces infinitely many other words). Thus,385

we can decide in NP whether N \ P is infinite, by guessing M < n ≤ 2M , and checking that386

it is in Lr(s0) for every r ∈ Pump (using repeated squaring on the respective DFAs).387

We conclude that both checking whether LN (s0) = N and whether N \ P is finite can be388

done in coNP, and so the initial value universality problem is also in coNP. J389

4.3 Bounded Universality390

For bounded universality, the states in Pump are not restrictive enough: in order to keep391

the counter bounded, a state must admit a 0-effect cycle. However, these cycles need not be392

simple. Thus, we need to adjust our definitions somewhat. Fortunately, however, once the393

correct definitions are in place, most of the proofs carry out similarly to those of Section 4.1.394

I Definition 16. A state q ∈ Q is stable if either:395

1. it is at the nadir of a simple positive cycle, and admits a negative cycle, or396

2. it is at the nadir of a simple zero cycle.397

We denote by Stable the set of stable states.398

Identifying stable states can be done in polynomial time (see e.g. Lemma 24). The motivation399

behind this definition is to identify states that admit a zero-effect (not necessarily simple)400

cycle.401

I Lemma 17. There exists a bound B5 ∈ poly(|Q|, ‖δ‖) such that, every stable state q admits402

a zero cycle of length and depth at most B5.403

By Lemma 17 we can fix, for each q ∈ Stable, some zero-cycle ζq with effect and depth404

bounded by B5. Recall that Lr(s0, c0) is the set of words that are accepted with a path that405

passes through r. Let S def=
⋃
r∈Stable Lr(s0, c0). We prove an analogue of Lemma 7.406

I Lemma 18. There exists a bound B6 ∈ poly(|Q|, ‖δ‖) such that every n ∈ Lr(s0, c0) has407

an accepting run of the form η1ζ
t
rη2 for paths η1, η2 of length at most B6.408

Proof. The proof follows mutatis-mutandis that of Lemma 7, with one important difference:409

before replacing cycles with iterations of the zero cycle ζr, we replace a bounded number of410

cycles with the positive cycle on r, on which r is at a nadir,2 so that the counter value goes411

above depth(ζr), enabling us to take ζr arbitrarily many times. Note that this lengthens the412

prefix η1 at most polynomially in (|Q| · ‖δ‖). J413

Lemma 18 implies that every word n ∈ S can be accepted by a run whose counter values414

are bounded because there must by an accepting run that, except for some bounded prefix415

and suffix, only iterates some zero-cycle ζr. More precisely, we have the following.416

2 That is, unless r is the nadir of a zero cycle, in which case the proof requires no changes.
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I Theorem 19. There exists B6 ∈ poly(|Q|, ‖δ‖) such that every word n ∈ S is accepted by417

a run whose counter value remains below 2B6 + c0.418

In addition, Lemma 18 immediately gives us (with an identical proof) an analogue of Lemma 8.419

420

I Lemma 20. There exists a bound B7 ∈ poly(|Q|, ‖δ‖) such that, for every r ∈ Stable there421

exists a DFA that accepts Lr(s0, c0) and is of size at most B7.422

We can now characterize bounded universality in terms of S, the set of stable states.423

I Lemma 21. L(s0, c0) is bounded-universal if, and only if, the underlying automaton N is424

universal (LN (s0) = N) and N \ S is finite.425

Finally, checking whether N \ S is finite can be done similarly to Section 4.1 (and the426

complexity depends on the transition encoding), by checking that a candidate word n of427

bounded length is not in Lr(s0, c0) for all stable states r. We conclude with the following.428

I Theorem 22. Bounded universality of one-counter nets is coNP-complete assuming unary429

encoding, and in coNPNP assuming binary encoding.430

5 Deterministic Systems431

We turn to deterministic one-counter nets (DOCNs) for which the underlying finite automaton432

is a DFA. We assume without loss of generality that the graphs underlying the DOCNs are433

connected, i.e., that all states are reachable from the initial state.434

For such systems, (bounded) universality problems can be decided by checking a suitable435

combination of simple conditions on cycles and short words. In order to prevent tedious436

repetition, we list these conditions first and prove (in Appendix C) upper bounds for checking437

each of them (Lemma 24). We then show which combination allows to solve each decision438

problem (Lemma 25).439

All mentioned upper bounds follow either easily from first principles, or from the result440

that the state reachability problem (a.k.a., coverability) for OCN is in NC [6, Theorem 15].441

We will also use the following fact, which follows from [26] (see C).442

I Lemma 23. Given a set S = {α1, α2 . . . αn} of integers written in binary, the question443

whether the sum of all elements in S is non-negative is in NC2.444

I Lemma 24 (Basic Conditions). Consider the following conditions on a deterministic445

one-counter net A = (Σ, Q, s0, δ, F), initial value c0 ∈ N, and bound b ∈ N.446

(C1) The underlying automaton is universal.447

(C2) Every word w of length |w| ≤ |Q| is in L(s0, c0)448

(C3) Every word w of length |w| ≤ |Q| is in L≤b(s0, c0)449

(C4) All simple cycles have non-negative effect.450

(C5) All simple cycles have 0-effect.451

Condition (C1) can be checked in non-deterministic logspace (NL), independently of the452

encoding of numbers. All other conditions can be verified in NL assuming unary encoding,453

and in NC (conditions (C4) and (C5) even in NC2) assuming binary encoding.454

I Lemma 25. Consider a deterministic one-counter net with initial state s0.455

1. For any c0 ∈ N, the language L(s0, c0) is universal if, and only if, all simple cycles are456

non-negative (C4), and all words shorter than the number of states are accepting (C2).457
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2. There exists an initial counter value c0 ∈ N such that L(s0, c0) is universal if, and only if,458

all simple cycles are non-negative (C4), and the underlying automaton is universal (C1).459

3. For any c0 ∈ N, there exists a bound b ∈ N such that the bounded language L≤b(s0, c0)460

is universal if, and only if, (C5) the effect of all simple cycles is 0 and (C3) all words461

shorter than the number of states are in L≤b′(s0, c0) for b′ def= |Q| · ‖δ‖.462

The following is a direct consequence of Lemmas 24 and 25.463

I Theorem 26. The universality, initial-value universality, and bounded universality problems464

for deterministic one-counter nets are in NL assuming unary encoding, and in NC assuming465

binary encoding.466

For the special case of DOCN over single letter alphabets, it is possible to derive even467

better upper bounds, based on the particular shape of the underlying automaton.468

Recall that a deterministic automaton over a singleton alphabet is in the shape of a lasso:469

it consists of an acyclic path that ends in a cycle.470

I Lemma 27. For any given deterministic one-counter net A = (Σ, Q, s0, δ, F) with |Σ| = 1471

and c0, b ∈ N, one can verify in deterministic logspace (L) that (C1) the underlying DFA is472

universal. Moreover, conditions (C2), (C3), (C4), and (C5) as defined in Lemma 24 can be473

verified in L assuming unary encodings and in NC2 assuming binary encodings.474

Using Lemma 27 and the characterisation of the three universality problems by Lemma 25,475

we get the desired complexity upper bounds.476

I Theorem 28. The universality, initial-value universality, and bounded universality problems477

of deterministic one-counter nets over a singleton alphabet are in L assuming unary encoding478

and in NC2 assuming binary encoding.479

6 Unambiguous Systems480

In line with the usual definition of unambiguous finite automata, we call an OCN with a481

given initial configuration unambiguous iff for every word in its language there exists exactly482

one accepting run. Since the language of an OCN depends in a monotone fashion on the483

initial counter value, there is also a related, but different, notion of unambiguity. We call484

an OCN (which has a fixed initial state s0) structurally unambiguous if the unambiguity485

condition holds for every initial counter c0. Notice that every OCN that has an unambiguous486

underlying automaton is necessarily structurally unambiguous. We will show (Lemma 32)487

that these conditions are in fact equivalent.488

In [12], the complexity of the universality problem for unambiguous vector addition489

systems with states (VASSs) was studied. In particular, for unambiguous OCNs, it is shown490

that checking universality is in NC2 and NL-hard, assuming unary encoded inputs, and in491

PSPACE and coNP-hard, assuming binary encoding. The special case of unambiguous OCN492

over a single letter alphabet is not considered there, nor are the initial-counter – and bounded493

universality problems. We discuss these problems in the remainder of this section.494

We assume w.l.o.g, that for any given OCN, all states in the underlying automaton are495

reachable from the initial state, and that from every state it is possible to reach an accepting496

state. States that do not satisfy these properties can be removed in NL. Moreover, all497

algorithms we propose need to check universality for the underlying automaton, and hence498

rely on the following computability result (see [27] for a proof for general alphabet, and499

Appendix D for singleton alphabet).500
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I Lemma 29. Universality of an unambiguous finite automaton over single letter alphabet501

is in NL, and over general alphabet is in NC2.502

We will start by considering the universality problem for unambiguous OCNs over a single503

letter alphabet. Here, unambiguity implies a strong restriction on accepting runs: if a run is504

accepting then it contains at most one positive cycle (which may be iterated multiple times).505

I Lemma 30. Let π = π1π2π3 be an accepting run where π2 is a positive simple cycle. Then506

π3 = πk2π4 for some k ∈ N and acyclic path π4.507

Proof. Assume towards contradiction that there is an accepting run π = π1π2π3π4π5, where508

π2 is a positive simple cycle and π4 is a simple cycle. Based on this we show that the system509

cannot be unambiguous. Let c = |Q| · ‖δ‖ and denote by |π| the length of path π.510

Since π2 has a positive effect, it follows that π′ = π1π
|π4|+c·|π2|
2 π3π4π5 is an accepting511

run. But there is a second run that reads the same word, namely π′′ = π1π
c·|π2|
2 π3π

|π2|
4 π5.512

The second run is indeed a run as the increment along πc·|π2|
2 is bigger than any possible513

negative effect of π|π2|
4 . Moreover the lengths of both runs are the same as π|π4|

2 = π
|π2|
4 . J514

A consequence of Lemma 30 is that if along any accepting run the value of the counter515

exceeds B0 = |Q| · ‖δ‖ then it cannot drop to zero afterwards, as it would require at least516

one negative cycle to do so. One can therefore encode all counter values up to B0 into the517

finite-state control and solve universality for the resulting UFA. Lemma 29 thus yields the518

following.519

I Theorem 31. The universality problem of unary encoded unambiguous one-counter nets520

over a singleton alphabet is in NL.521

We consider next the initial-value universality problem for unambiguous OCNs. Since522

whether an OCN is unambiguous depends on the initial counter value, the initial-value523

universality problem is only meaningful for structurally unambiguous systems, those which524

are unambiguous regardless of the initial counter. We first observe a simple fact about these525

definitions.526

I Lemma 32. An OCN is structurally unambiguous if and only if its underlying automaton527

is unambiguous.528

I Lemma 33. Consider a structurally unambiguous OCN with initial state s0. There exists529

an initial counter c0 so that L(s0, c0) = Σ∗ if, and only if, the underlying automaton is530

universal and has no negative cycles.531

The following is a direct consequence of Lemma 33 and the complexity bounds provided532

by Lemmas 24 and 29, for the cycle condition (C4).533

I Theorem 34. The initial-value universality problem of structurally unambiguous one-534

counter nets is in NC2 assuming binary encoding, and in NL assuming unary encoding and535

single-letter alphabets.536

Finally, we turn our attention to the bounded universality problem for unambiguous537

OCNs. This turns out to be quite easy, due to the following observation.538

I Lemma 35. If an unambiguous OCN is bounded universal then no accepting run contains539

a positive cycle.540

I Theorem 36. The bounded universality problem of unambiguous one-counter nets with541

unary-encoded transition weights is in NC2, and in NL if the alphabet has only one letter, and542

for binary-encoded transition weights it is in PSPACE.543
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A Proofs of Section 3607

I Theorem 1. The initial-value universality problem for one-counter nets is undecidable.608

Proof. We show that a given two-counter machineM halts if and only if the corresponding609

one-counter net A, as constructed in Section 3.1, is initial-value universal.610

⇒: WhenM halts, its (legal) run has some length n− 1. We claim that A is universal with611

the initial value n.612

Consider some word w over the alphabet of A. We shall describe an accepting run ρ of A613

on w. Until the first occurrence of #, the run ρ is deterministically in q0, which is accepting.614

We show that for every segment between two consequent #’s, as well as the segment after615

the last #, the run ρ may either reach heaven or reach q0 with counter value at least n616

(and remains there until the next # or the end of the word), from which it follows that ρ is617

accepting.618

If the segment is shorter than n, q0 can choose to go to q1 over #, and from there it will619

reach heaven. If the segment is longer than n, it cannot describe the legal run ofM. Then,620

it must cheat within up to n steps. We show that each of the 5 possible cheats fulfills the621

claim.622

1. If it makes a non-counting cheat, q0 will go to q2 over #, and will reach heaven. (This is623

also the case if it has additional letters different from # after the ‘halt’ letter.)624

2. If it makes a positive cheat on x, q0 will go to q3 upon reading the next #. When the cheat625

occurs, the value of x is positive, while reading the letter ‘x=0 then goto’. Notice that626

the value of A’s counter is accordingly bigger than its value when entering q3 (and by the627

inductive assumption bigger than n). Then, q3 goes to q0 with weight −1, guaranteeing628

that A’s counter value is at least n. Notice that the counter value cannot go below n at629

any point, sinceM cannot make the value of x negative without a counting cheat. (We630

equippedM with a counter check before every decrement.)631

3. If it makes a negative cheat on x, q0 will go to q4. Then, when the cheat occurs, the value632

of x is 0, while there is the letter ‘x>0 then goto’. Notice that the value of A’s counter633

is accordingly exactly its value when entering q3 (and by the inductive assumption at634

least n). Then, q4 goes to q0 with weight 0, guaranteeing that A’s counter value is at635

least n. Notice that the counter might go below n between getting to q4 and returning to636

q0. Yet, since the violation must occur within up to n steps, and the value of the counter637

when entering q4 is at least n, we are guaranteed to be able to properly continue with638

the run, as the counter need not go below 0.639

http://doi.acm.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
http://wrap.warwick.ac.uk/34701/
http://www.sciencedirect.com/science/article/pii/0020019096000397
https://doi.org/https://doi.org/10.1016/0020-0190(96)00039-7
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4-5. Analogously, if it makes a positive or negative cheat over y, the choice of q0 will be q5640

or q6, respectively.641

⇐: WhenM does not halt, for every positive integer n, we build the word wn and show that642

it is not accepted by A with an initial counter value n.643

The word wn consists of n+ 1 segments between #’s, where each segment is the prefix of644

length n+ 1 of the (legal) run ofM. Consider the possible runs of A on wn. It cannot go645

from q0 to q1, because it will stop after n steps. It also cannot go to q2, because there is no646

cheating. We show that if it goes to q3..q6, it must return to q0 before the next #, while647

decreasing the value of A’s counter, which can be done only n times until the run stops.648

If it goes to q3, it must return to q0 upon some ‘x=0 then goto’, as it cannot continue649

the run on #. Yet, as there is no cheating, it returns to q0 when x = 0, which implies650

that A’s counter has the same value as when entering q3, and due to the −1 weight of the651

transition to q0, it returns to q0 while decreasing the value of A’s counter by 1. An analogous652

argument follows if it goes to q5.653

If it goes to q4, it must return to q0 upon some ‘x>0 then goto’, as it cannot continue654

the run on #. Yet, as there is no cheating, it returns to q0 while the value of x is indeed655

strictly positive, which implies that the value of A’s counter is smaller than the value it had656

when entering q4, and therefore due to the 0-weight transition to q0, it returns to q0 with a657

smaller value of A’s counter. An analogous argument follows if it goes to q6. J658

I Theorem 2. The bounded universality problem for one-counter nets is undecidable.659

Proof. We show that a given two-counter machineM halts if and only if the corresponding660

one-counter net A′, as constructed in Section 3.2, is bounded universal for an initial counter661

value 0.662

⇒:WhenM halts, its (legal) run has some length n− 1. We claim that A′ is universal with663

the counter bound 2n.664

Consider some word w′ over the alphabet of A′. We shall describe an accepting run ρ′ of665

A′ on w′. In the first n steps, ρ′ remains in q′0, increasing the counter to n. Then, it moves666

to q0. In the rest of the run, ρ′ continues as the accepting run ρ of A on the word w that is667

the suffix of w′ from the n+ 1 position (as described in the proof of Theorem 1), except for668

the following changes: whenever it is in q0 and the counter is bigger than n, it goes to q7 on669

#. In q7, it uses the self loop until the counter’s value becomes n and then goes to q0.670

If the length of w′ is up to n, then ρ′ is obviously accepting, as it remains in the accepting671

states q′0 and q0, and the counter need not exceed 2n nor go below 0.672

If the length of w′ is more than n, we prove that for every segment between two consequent673

#’s, as well as the segment after the last #, the run ρ′ may either reach heaven or reach q0674

with counter value at least n, and proceed from q0 to q1..q6 with counter value exactly n.675

This will immediately imply that ρ′ is accepting.676

The challenge is to show that the counter of A′ never needs to exceed 2n. (It does not go677

below 0, since we go from q0 to q1..q6 with a counter value of at least n (in this case exactly678

n), which satisfies the assumptions in the proof of Theorem 1.)679

Now, in states q1, q2, q4, q6, and q7 there is no problem, as the counter never gets above its680

value when entering these states. Yet, in states q3 and q5 there is a potential problem, since681

A′’s counter increases whenM’s counters increase. However, since the (legal) run ofM is of682

length n− 1, a violation must occur within up to n steps. Hence, getting to states q3 and q5683

with counter value of exactly n, the run ρ′ may return to q0 over the first violation, and thus684

need not increase the counter’s value to more than 2n. Observe that when returning to q0685
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the counter’s value might be bigger than n, in which case ρ′ will later decrease it to exactly686

n by going to q7.687

⇐: WhenM does not halt, for every positive integer n, we build the word w′n and show that688

it is not accepted by A′ for an initial counter value 0 and a bound n on the counter.689

The word w′n consists of n+ 2 segments between #’s, where each segment is the prefix of690

length n of the (legal) run ofM. Consider the possible runs of A′ on w′n. In q′0 it can stay691

up to n steps, entering q0 with a counter value of up to n. Then it should accept from q0 the692

suffix of w′n, which contains n+ 1 segments as described above. However, as shown in the693

proof of Theorem 1, using all states except for q7, it must decrease the counter value in each694

segment, and so is the case if using q7. Hence, the run must stop after at most n segments695

and cannot be accepting. J696

B Proofs of Section 4697

I Lemma 5. Let π be an executable path of length n from (p, c) to (q, c′). Then there exists698

an executable path π′ of length n in linear form whose length is at most 2|Q|2, from (p, c) to699

(q, c′′) with c′′ ≥ c′.700

Proof. Let n ∈ L(s0, c0), and let π = s0, s1, . . . , sn be an accepting run of the OCN on n.701

For each state q visited by π, let f(q) and `(q) denote the first and last indices where q702

occurs in π, respectively. Let Marks def= {f(q), `(q) : q occurs in π} be the set of all markings703

in π. Observe that |Marks| ≤ 2|Q|.704

We reshape π into linear form in two phases. In the first phase, we move cycles around705

such that in the obtained path, any infix between two marked positions consists of a simple706

path, and a collection of simple cycles. In the second phase, we replace most of the simple707

cycles, such that any infix between two marked positions consists of a relatively short path,708

and a single repeating cycle (which completes the linear form). Crucially, in both phases we709

must take care that the path remains executable. The crux of the proof is that instead of710

simply shifting cycles, we also change their starting point, such that they always start from711

a nadir, thus making them executable with any counter value.712

For the first phase, consider an interval [i, i + |Q|] in π that does not intersect Marks713

(if no such interval exists, we proceed to the second phase). Since this interval has |Q|+ 1714

states, it contains some simple cycle γ = x1, x2, . . . , xk. Let d be a nadir of γ, and observe715

that necessarily f(xd) < i and `(xd) > i+ |Q|, since the interval [i, i+ |Q|] does not contain716

any marks.717

We now split into two cases.718

If effect(γ) ≥ 0, we modify π by removing the cycle γ from the interval [i, i+ |Q|], and719

instead adding the shifted cycle γ←d at index f(xd).720

Observe that the modified path is still executable, since by Observation 3 the cycle γ←d721

is good, and can be executed with any counter value, and following its execution, the722

remaining path either has higher counters (up to where γ occurred) or the same values723

as in π (after where γ occurred).724

If effect(γ) < 0, we modify π by removing the cycle γ from the interval [i, i+ |Q|], and725

instead adding the shifted cycle γ←d at index `(xd).726

Observe that the modified path is still executable. Indeed, by Observation 3 effect(γ←d) =727

−depth(γ←d), and so γ←d can be executed as long as the counter is at least effect(γ←d).728

Moreover, removing this negative cycle results in a run in which, all counter-values from729

the index of removal are increased by −effect(γ). In particular, at index `(xd) it is at730
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least 0 + effect(γ←d), so γ←d can be executed. Notice that moving a negative cycle like731

this results in a path that is executable an has the same effect as π.732

This completes the first phase. We remark that conceptually, this cycle modification takes733

place in a single “shot” for all cycles, so that the indices in Marks do not change after every734

cycle is moved, but are rather the same for all cycles being moved (otherwise intervals may735

“expand”, and Marks becomes ill-defined).736

We now proceed to the second phase. Let π′ be the path obtained after the first phase.737

We refer to any cycle that was moved in π as a dangling cycle. Thus, π′ consists of at most738

2|Q| intervals3 that contain no non-dangling cycles, and at most 2|Q| indices on which there739

are dangling cycles (namely the indices in Marks). Furthermore, the dangling cycles always740

start at their respective nadirs.741

We now proceed to eliminate most dangling cycles at each state. Consider some mark742

f(q) or `(q) in Marks. For each 1 ≤ t ≤ |Q|, consider all simple cycles of length t where q743

is a nadir, and let µq,t be such a cycle of maximal effect. We now replace every dangling744

cycle of length t in f(q) with µq,t. Clearly the effect of the cycles does not decrease, so the745

path remains executable. Furthermore, we maintain the length of the paths, so the path still746

represents a run on n.747

Finally, within each mark, we can bunch the cycles by length, so that all cycles of the748

same length are executed consecutively. Thus, the obtained path consists of at most 2|Q|749

simple paths and 2|Q| · |Q| = 2|Q|2 simple cycles, which is a linear form as required. J750

I Lemma 7. There exists a bound B1 ∈ poly(|Q|, ‖δ‖) such that, for every n ∈ N, if n is751

accepted by a run that visits a state r ∈ Pump, then n has an accepting run of the form752

η1γ
t
rη2 for paths η1, η2 of length at most B1.753

Proof. Let γr be a shortest good cycle on r, and let ρ be a an accepting run that passes754

through r. We write ρ = π1, r, π2, where πr is a prefix of the run before it visits r and755

π2 is the suffix after visiting r (note that r may occur in π2). Furthermore, by Lemma 5756

we can assume π1 and π2 are in linear form of length at most 2|Q|2. Thus, we can write757

π1 = τ0γ
e1
1 τ1 · · · τk−1γk

ekτk with k ≤ 2|Q|2, and similarly for π2.758

We now start by replacing negative cycles in π1 and in π2 by repetitions of γr (the good759

cycle on r). This is done as follows. For every subset of cycles whose combined length equals760

m|γr| for some m ∈ N, we remove those cycles and replace them by m iterations of the good761

cycle γr. Since we only remove negative cycles, and since γr has non-negative effect and762

depth 0, the run remains executable. Recall that the γi cycles are simple, and are therefore763

of length at most |Q|. Thus, after removing cycles in this manner, we are left with at most764

|γr| − 1 ≤ |Q| negative cycles of every length.765

We now aim to remove non-negative cycles in the same fashion. This, however, requires766

some caution, as some cycles might have effect greater than that of γr, or appear before the767

run visits state r for the first time, and therefore replacing them with γr may cause the path768

to become non-executable. Recall that by Definition 4 (and indeed, by the construction in769

the proof of Lemma 5) all the non-negative γi cycles start from their nadir, and therefore770

have depth 0. In addition, after removing the negative cycles as done above, the path771

length (excluding the non-negative cycles) is at most 2|Q|2 + |Q|2 = 3|Q|2 in each of π1772

and π2. Thus, the maximal depth possible along the entire path is 6|Q|2‖δ‖. Thus, as long773

as a (strictly) positive cycle (or a combination thereof) is taken enough times to maintain774

3 The first and last indices of π must be marked and so there are in fact at most 2|Q| − 1 intervals.
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the counter above 6|Q|2‖δ‖, the path remains executable. We can now proceed to replace775

non-negative cycles with γr in the same manner done for negative cycles, while maintaining776

executability.777

We thus end up with a modified run of the form η1γ
t
rη2 where η1 and η2 are of length778

poly(|Q|, ‖δ‖), which implies the claim. J779

I Lemma 8. There exists a bound B2 ∈ poly(‖δ‖ · |Q|) such that, for every r ∈ Pump, there780

exists a DFA that accepts Lr(s0, c0) and is of size at most B2.781

Proof. From Lemma 7 it follows that there exists a bound B1 ∈ poly(|Q|, ‖δ‖) such that782

every word accepted with a run that goes through r is of the form x+ y|γr| where x, y ∈ N783

and x ≤ B0. Thus, we can construct a DFA of size B2
def= B1 + |γr| whose form is an initial784

prefix of length B1, followed by a cycle of length |γr|, and whose accepting states correspond785

to all the x above, with corresponding accepting states on the cycle. J786

I Lemma 9. There exists B3 ∈ poly(‖δ‖, |Q|) such that L(s0, c0) 6= N if, and only if, there787

exists n ∈ N such that either n < B2 and n /∈ L(s0, c0), or B|Q|3 ≤ n ≤ 2B|Q|3 and n /∈ P.788

Proof. Let B2 be as per Lemma 8, and define B3
def= B

|Pump|
2 ≤ B

|Q|
2 . Observe that by789

taking the product of the DFAs obtained in Lemma 8, we can construct a DFA D of size at790

most B3 for N \P . Then, N \P is infinite iff there exists a word of length B3 ≤ n ≤ 2B3 that791

is accepted by D (as such a word is necessarily accepted by a run that contains a cycle in D).792

Towards the claim, if N \ P is infinite, then L(s0, c0) 6= N, and clearly if there exists793

n < B2 such that n /∈ L(s0, c0) then again, L(s0, c0) 6= N.794

Conversely, assume L(s0, c0) 6= N. We claim that either there exists n < B2 with795

n /∈ L(s0, c0), or N \ P is infinite. Indeed, observe that since D is obtained as the product of796

singleton-alphabet DFAs, then it has a “lasso” shape: a finite prefix of states, followed by a797

cycle. Moreover, the size of the prefix is at most B2, namely the maximal size of the prefix798

in each of the DFAs in the product. Thus, if there exists n < B2 with n /∈ L(s0, c0) then we799

are done, and otherwise there is some n > B2 with n /∈ L(s0, c0), and in particular n /∈ P , so800

D accepts some word along its cycle, and so accepts infinitely many words, and in particular801

some word B3 ≤ n ≤ 2B3. J802

I Lemma 11. Let π = τ0γ
e1
1 τ1 · · · τk−1γ

ek

k τk be a run in linear form, then we can check803

whether π is executable from counter value c in time polynomial in the description of π.804

Proof. Checking that the transitions follow those of the OCN can be done in polynomial805

time, since we only need to check the underlying path, regardless of the exponents. In order806

to check that the counter value remains non-negative, we observe that for any cycle γi, if807

effect(γi) ≥ 0, then γi is taken from a nadir (by Definition 4), and hence can be taken with808

any counter value. If that is the case, then we can compute directly effect(γei
i ) = ei ·effect(γi).809

Otherwise, if effect(γi) < 0, then in order to check if γei
i is executable from counter value c,810

it suffices to check that (ei − 1) · effect(γi)− depth(γi) ≤ c. Indeed, for negative cycles, the811

last iteration is the “hardest”. Again, we can now compute effect(γei
i ) = ei · effect(γi).812

Thus, we can keep track of the counter value along the underlying path, and update it813

directly for every cycle. This takes polynomial time overall. J814

I Lemma 13. There exists c0 such that LA(s0, c0) = N iff LN (s0) = N and N \ P is finite.815

Proof. For the first direction, assume LA(s0, c0) = N for some c0. Clearly LN (s0) = N as816

otherwise some word is not accepted in the underlying NFA, let alone the OCN. Assume817



S. Almagor, U. Boker, P. Hofman, P. Totzke 21

by way of contradiction that N \ P is infinite, and recall that in every accepting run on a818

word n ∈ N \ P , all cycles must be negative. Thus, for long enough words, the counter value,819

starting at c0, must become negative, which is a contradiction.820

Conversely, if N \ P is finite and LN (s0) = N, we can take an initial counter value large821

enough so that all words not in P have accepting runs. Then, similarly to Lemma 7, we822

can show that every word in P has an accepting run of the form τ1γ
t
rτ2 with τ1 and τ2 of823

length poly(|Q|) and where γr is the canonical good cycle from state r ∈ Pump with maximal824

effect. Notice here that the bound on the lengths of paths τ1 and τ2 is polynomial only in the825

number of states and not, as in Lemma 7, also in ‖δ‖. This is because we can safely remove826

any combination of simple cycles in these sub-paths without preserving the executability of827

the resulting path in the net. A large enough counter value ensures that the prefix and suffix828

are executable, so all words in P are accepted as well. J829

I Lemma 17. There exists a bound B5 ∈ poly(|Q|, ‖δ‖) such that, every stable state q admits830

a zero cycle of length and depth at most B5.831

Proof. If q is at the nadir of a simple zero cycle, then |Q| bounds its length and we are done.832

Otherwise, since q admits a negative cycle, then there is a state x ∈ Q that admits a833

simple negative cycle γ such that x and q are reachable from each other. Let τ1 and τ2834

be simple paths from q to x and from x to q, respectively. Let s = effect(τ1τ2) + 1, then835

χ = τ1γ
sτ2 is a negative cycle of length at most 3|Q| · ‖δ‖.836

Let η be a simple positive cycle that has a nadir at q. Then q admits the zero cycle837

ζq = η−effect(χ) ·χeffect(η) and B5
def= |Q| · (|Q| · ‖δ‖) + (3|Q| · ‖δ‖) · |Q| satisfies the claim. J838

I Lemma 21. L(s0, c0) is bounded-universal if, and only if, the underlying automaton N is839

universal (LN (s0) = N) and N \ S is finite.840

Proof. By Theorem 19, there exists a bound B7 such that all words in S are accepted841

with paths whose counter values remains below B7. Hence, if there are only finitely many842

words that are outside S, and LN (c0) = N, then the counter values among the runs on the843

remaining finite set of words are clearly bounded. Hence, L(s0, c0) is bounded-universal.844

Conversely, assume N\S is infinite, we show that L(s0, c0) is not bounded-universal. First,845

if LN (s0) 6= N the OCN cannot be universal, and in particular it is not bounded-universal.846

Observe that by Definition 16, words outside S can be accepted only with paths on which847

the number of alternations between positive and negative cycles is at most |Q|, and that do848

not contain zero cycles. Since only finitely many words can be accepted using a bounded849

number of positive cycles, it follows that if N \ S is infinite, then for every M ∈ N there850

exists a word that is only accepted by runs that have a positive cycle taken at least M times,851

and hence have effect at least M . It follows that L(s0, c0) is not bounded-universal. J852

I Theorem 12. The universality problem for singleton-alphabet one-counter nets with trans-853

itions encoded in binary is in coNPNP.854

Proof. Following our algorithmic scheme, an NPNP algorithm for non-universality proceeds as855

follows. non-deterministically either (1) guess n < B3, and check (using an NP oracle as per856

Lemma 11) that n /∈ L(s0, c0), or (2) guess B|Q|3 ≤ n ≤ 2B|Q|3 and check that n /∈ LAr (s0, c0)857

for all r ∈ Pump, using |Q| calls to an NP oracle as per Lemma 11. J858
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C Proofs of Section 5859

I Lemma 23. Given a set S = {α1, α2 . . . αn} of integers written in binary, the question860

whether the sum of all elements in S is non-negative is in NC2.861

Proof. Addition of two integers written in binary can be done in AC0 [26], and therefore in862

NC1. As the summation of n numbers can be done in logn iterations (whereby each iteration863

reduces the number of elements by a factor of 2 by adding up α2i and α2i+1, for every index864

i up to half the number of elements), and each iteration is in NC1 (by performing in parallel865

all of these additions), we get that the overall problem is in NC2. J866

I Lemma 24 (Basic Conditions). Consider the following conditions on a deterministic867

one-counter net A = (Σ, Q, s0, δ, F), initial value c0 ∈ N, and bound b ∈ N.868

(C1) The underlying automaton is universal.869

(C2) Every word w of length |w| ≤ |Q| is in L(s0, c0)870

(C3) Every word w of length |w| ≤ |Q| is in L≤b(s0, c0)871

(C4) All simple cycles have non-negative effect.872

(C5) All simple cycles have 0-effect.873

Condition (C1) can be checked in non-deterministic logspace (NL), independently of the874

encoding of numbers. All other conditions can be verified in NL assuming unary encoding,875

and in NC (conditions (C4) and (C5) even in NC2) assuming binary encoding.876

Proof. Unary encoding. All conditions can be shown to be in NL using the theorems877

of Savitch (reachability in finite directed graphs is in NL) and Immerman–Szelepcsényi878

(NL = coNL). Indeed, (C1) holds iff no non-accepting state is reachable in the underlying879

automaton.For the remaining conditions, just notice that the assumption that inputs are880

given in unary means that all relevant numbers are bounded polynomially in the input. For881

instance, to show that (C4) does not hold, one simply guesses the offending simple cycle and882

stepwise computes its effect in binary representation.883

Binary encoding. Let’s first consider condition (C2). This fails iff there is a short word884

whose run in A either ends in a non-accepting state or reduces the counter below zero. The885

first case is again a simple reachability condition in the underlying DFA. The second case886

reduces to a coverability problem as follows.887

For k ∈ N, let A × k def= (Q × {0, 1, . . . , k},Σ, δ′, F ′, s′0) be the OCN that results from888

A by adding a step-counter up to k into the states. That is, δ′ def= {((p, i), α, e, (q, i+ 1)) :889

(p, α, e, q) ∈ δ, i ≤ k}, F ′ def= F × {0 . . . k}, and s′0
def= (s0, 0). Further, let B denote the OCN890

A× |Q|, in which all transition effects are inverted. Notice that for every word w of length891

|w| ≤ |Q|, the effect of its induced run in A (and B) is between −B and B, for B def= |Q| · ‖δ‖.892

Such a word cannot be accepted by A from (s0, c0) iff the run it induces in B starting from893

(s′0, B) leads to some configuration ((q, |w|), (B+ c0 + 1)). This reachability question about B894

can be answered in NC [6, Lemma 1 and Theorem 15 ], and since A and B are of polynomially895

the same size, also in NC with respect to A.896

An NC upper bound for condition (C3) is completely analogous and differs only in that897

an additional reachability check should be taken, in which the weights in B are not inverted898

and the target configuration is ((q, |w|), (B + b− c0 + 1)).899

Conditions (C4) and (C5) on the effect of simple cycles can be verified in NC by a similar900

reduction to coverability. For example, to check if a simple cycle with negative effect exists901

it suffices to check that it is possible in B to start in a configuration ((q, 0), B) and cover a902

configuration ((q, k), (B + 1)) for some 0 < k < |Q|.903
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We can do slightly better than that and check these conditions in NC2, as follows. Let904

Q = {p1, p2, . . . , p|Q|}, and for every 0 < k < |Q|, let Mk denote the |Q| × |Q| matrix of905

elements in Z ∪∞, where the entry for i, j equals the minimal effect of a path of length k906

from state pi to pj . Then, Mk can be computed in NC2 using standard repeated-squaring in907

the min-plus semiring [4]908

To check condition (C4), that all simple cycles have non-negative effect, we just need to909

check (in parallel) that all entries in the main diagonal of all theMk matrices are non-negative.910

The same procedure, applied to an OCN that is derived from A by inverting all transition911

weights, allows to check for the presence of positive simple cycles, and hence for an NC2
912

algorithm to check condition (C5). J913

I Lemma 25. Consider a deterministic one-counter net with initial state s0.914

1. For any c0 ∈ N, the language L(s0, c0) is universal if, and only if, all simple cycles are915

non-negative (C4), and all words shorter than the number of states are accepting (C2).916

2. There exists an initial counter value c0 ∈ N such that L(s0, c0) is universal if, and only if,917

all simple cycles are non-negative (C4), and the underlying automaton is universal (C1).918

3. For any c0 ∈ N, there exists a bound b ∈ N such that the bounded language L≤b(s0, c0)919

is universal if, and only if, (C5) the effect of all simple cycles is 0 and (C3) all words920

shorter than the number of states are in L≤b′(s0, c0) for b′ def= |Q| · ‖δ‖.921

Proof. 1. (Normal Universality): Clearly both conditions are necessary for the system to922

be universal. To see why they are sufficient for universality, assume that (C4) holds and923

consider shortest word w 6∈ L(s0, c0). Then the run on w cannot contain any non-negative924

cycle because this would contradict the minimality assumption. Since we assume (C4),925

that all cycles are non-negative, the run on w must have no cycles. Thus, |w| ≤ |Q| which926

is impossible due to (C2).927

2. (Initial-Value Universality): If both conditions hold then any cycle on any run must928

have non-negative effect. So if one picks c0
def= |Q| · ‖δ‖ then the counter cannot become929

negative on any run and the language L(s0, c0) equals that of the underlying automaton,930

namely Σ∗ by condition (C1).931

Conversely, since L(s0, c0) is always included in the language of the underlying automaton,932

condition (C1) is clearly necessary. If (C4) fails then, because the system is deterministic,933

for every number c0 there must be a word w(c0) ∈ Σ∗ whose run has an effect strictly934

below −c0. Then w /∈ L(s0, c0). Therefore both conditions are necessary.935

3. (Bounded Universality): Trivially, both conditions are necessary. For the oppos-936

ite direction, assume that the conditions hold. We contradict the assumption that937

L≤b′(s0, c0) 6= Σ∗. If that was the case, we can pick a shortest word w not in that938

language. The run of this word cannot contain a cycle, because by condition (C5) all939

cycles have zero effect on the counter and therefore the presence of a cycle on the run940

would contradict the assumed minimality of |w|. This implies that w is no longer than the941

number of states, and by condition (C3) it must be in L≤b′(s0, c0). Contradiction. J942

I Lemma 27. For any given deterministic one-counter net A = (Σ, Q, s0, δ, F) with |Σ| = 1943

and c0, b ∈ N, one can verify in deterministic logspace (L) that (C1) the underlying DFA is944

universal. Moreover, conditions (C2), (C3), (C4), and (C5) as defined in Lemma 24 can be945

verified in L assuming unary encodings and in NC2 assuming binary encodings.946

Proof. Condition (C1) is equivalent to checking that all states are accepting (Q = F). For947

the other conditions, notice that if all numbers are encoded in unary then one only needs to948

compute numbers bounded polynomially in |Q| and ‖δ‖. This can be done in deterministic949
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logspace by representing them in binary. If numbers are already encoded in binary then the950

NC2 bounds follow from Lemma 23. J951

D Proofs of Section 6952

I Lemma 29. Universality of an unambiguous finite automaton over single letter alphabet953

is in NL, and over general alphabet is in NC2.954

Proof. The lemma was proven in [27], for the general alphabet. For the single letter alphabet955

we have that if the language is not universal then the shortest not accepted word is bounded956

by |Q| [11] (Lemma 2). Thus to verify universality, we need to test if for every 0 ≤ i ≤ |Q|957

there is an accepting run of length i, which can be tested in NL. J958

I Theorem 31. The universality problem of unary encoded unambiguous one-counter nets959

over a singleton alphabet is in NL.960

Proof. By Lemma 30 it is possible to construct an unambiguous finite automaton (UFA) of961

polynomial size, which is universal if and only if the net is universal. This can be done by962

bounding the counter from above by B0, remembering its value in the states, and switching963

to a copy of the underlying automaton once the counter is observed to exceed this bound. It964

is easy to see that every run in the net induces a run in the automaton and vice-versa. The965

number of states of this new finite automaton is |Q| · (1 +B0) + |Q|. Since the constructed966

UFA is still over a single letter alphabet, we can check if it is universal NL by Lemma 29. J967

I Lemma 32. An OCN is structurally unambiguous if and only if its underlying automaton968

is unambiguous.969

Proof. If the underlying automaton is unambiguous then the net is as well, as every run of970

the net is also a run of the automaton.971

In the opposite direction, suppose that the underlying automaton is not unambiguous,972

then there is a word w read by two accepting runs π1 and π2. If we start with the counter973

value bigger than (|π1| + |π2|) · ‖δ‖ then the both runs in the underlying automaton will974

describe two different accepting runs in the OCN. J975

I Lemma 33. Consider a structurally unambiguous OCN with initial state s0. There exists976

an initial counter c0 so that L(s0, c0) = Σ∗ if, and only if, the underlying automaton is977

universal and has no negative cycles.978

Proof. “If”. If all cycles have non-negative effect then an initial value of c0
def= B0 suffices to979

ensure that no run can drop the counter below zero. Consequently, the system behaves just980

like its underlying automaton, which is universal by assumption.981

“Only if”. The language L(s0) of the underlying automaton clearly includes L(s0, c)982

for any value c ∈ N. By assumption that there is c0 with L(s0, c0) = Σ∗, the underlying983

automaton must be universal.984

It remains to show that it cannot contain any (reachable) simple cycles with negative985

effect. Towards a contradiction, suppose that π1π2π3 is an accepting run from a configuration986

(s0, c0) and that effect(π2) < 0. Then there is must exist k ∈ N such that π1π
k
2π3 is not a run987

from the configuration (s0, c0), as the counter runs out. By assumption, that the language of988

the net with initial configuration (s0, c0) is universal, there must be another run π4 on the989

same word, and which is accepting. But now both runs, π4 and π1π
k
2π3, are accepting from990

the configuration (s0, c0 + ‖δ‖ · |π2| · k) as the effect of πk2 is larger than ‖δ‖ · |π2| · k. This991

means that the net is not structurally unambiguous, which contradicts our assumptions. J992
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I Lemma 35. If an unambiguous OCN is bounded universal then no accepting run contains993

a positive cycle.994

Proof. Suppose otherwise, then for any bound k there will be an accepting run which is995

going through configurations with counter value bigger than k, and from unambiguity, there996

is no other run that stays below the bound. J997

I Theorem 36. The bounded universality problem of unambiguous one-counter nets with998

unary-encoded transition weights is in NC2, and in NL if the alphabet has only one letter, and999

for binary-encoded transition weights it is in PSPACE.1000

Proof. Unary encoded transitions: By Lemma 35, if the OCN is bounded universal then1001

every accepting run will only visit counter values below B1
def= c0 + B0 = c0 + |Q| · ‖δ‖.1002

This means that the OCN is bounded universal if, and only if, L≤B1(s0, c0) = Σ∗. This can1003

be verified by checking universality for the UFA that results by remembering all bounded1004

counter values in the finite state space. The claim now follows by Lemma 29.1005

Binary encoded transitions: By Lemma 35, if the OCN is bounded universal then1006

every accepting run will only visit counter values below B1
def= c0 +B0 = c0 + |Q| · ‖δ‖. This1007

means that the OCN is bounded universal if, and only if, L≤B1(s0, c0) = Σ∗. This can be1008

verified by checking universality for the UFA that results by remembering all bounded counter1009

values in the finite state space. The claim now follows by Lemma 29 and the following fact1010

NC= PolyLog applied to the UFA which is of exponential size. J1011
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