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Abstract. The logic LTLO extends LTL by quality operators. The satisfaction value
of an LTLO formula in a computation refines the 0/1 value of LTL formulas to a
real value in [0, 1]. The higher the value is, the better is the quality of the computa-
tion. The quality operator Oλ, for a quality constant λ ∈ [0, 1], enables the designer
to prioritize different satisfaction possibilities. Formally, the satisfaction value of a sub-
formula Oλϕ is λ times the satisfaction value of ϕ. For example, the LTLO formula
G(req → (Xgrant ∨ O 1

2
F grant)) has value 1 in computations in which every request

is immediately followed by a grant, value 1
2

if grants to some requests involve a delay,
and value 0 if some request is not followed by a grant.
The design of an LTLO formula typically starts with an LTL formula on top of which
the designer adds the parameterized O operators. In the Boolean setting, the problem of
automatic generation of specifications from binary-tagged computations is of great im-
portance and is a very challenging one. Here we consider the quantitative counterpart:
an LTLO query is an LTLO formula in which some of the quality constants are replaced
by variables. Given an LTLO query and a set of computations tagged by satisfaction
values, the goal is to find an assignment to the variables in the query so that the obtained
LTLO formula has the given satisfaction values, or, if this is impossible, best approxi-
mates them. The motivation to solving LTLO queries is that in practice it is easier for
a designer to provide desired satisfaction values in representative computations than to
come up with quality constants that capture his intuition of good and bad quality.
We study the problem of solving LTLO queries and show that while the problem is
NP-hard, interesting fragments can be solved in polynomial time. One such fragment is
the case of a single tagged computation, which we use for introducing a heuristic for
the general case. The polynomial solution is based on an analysis of the search space,
showing that reasoning about the infinitely many possible assignments can proceed by
reasoning about their partition into finitely many classes. Our experimental results show
the effectiveness and favorable outcome of the heuristic.

1 Introduction
Traditional formal methods are based on a Boolean satisfaction notion – a reactive system
satisfies, or not, a given specification. In recent years there is growing need and interest in
formalizing and reasoning about quantitative systems and properties. This includes, for ex-
ample, probabilistic [16], fuzzy [18], and accumulative [9] settings. An exciting direction in
this effort is the development of formalisms and methods for reasoning about the quality of
systems [1, 2]. The working assumption in these works is that satisfying a specification is
not a yes/no matter. Different ways of satisfying a specification should induce different lev-
els of quality, which should be reflected in the semantics of the specification formalism. In
particular, in [2], the authors introduce an extension of linear temporal logic (LTL [19]) by a
quantitative layer that enables the designer to prioritize different satisfaction possibilities. In
the extended setting, the satisfaction value of a formula in a computation refines the 0/1 value
of LTL formulas to a real value in [0, 1]. The higher the value is, the better is the quality of
the computation.



The extension uses a family of propositional quality operators. A basic such operator
is Oλ, for a quality constant λ ∈ [0, 1] that multiplies the satisfaction value of its operand
by λ. We consider the logic LTLO, which extends LTL by the Oλ operator. The standard
LTL operators are adjusted in LTLO to values in [0, 1]: disjunctions are interpreted as max,
negation as subtraction from 1, and so on. For example, the satisfaction value of the formula
ψ1 ∨ O 1

2
ψ2 in a computation π is the maximum between the satisfaction value of ψ1 in π,

and 1
2 the satisfaction value of ψ2 in π. As a more elaborate example, consider a system that

grants locks to a data structure. The system can grant either a read-only lock or a read-write
lock. The quality of the system may be specified as G(req → X(read-write∨ (O 3

4
read-only)),

stating that receiving read-write lock gives satisfaction value of 1, whereas receiving a read-
only lock reduces that satisfaction value to 3

4 , In [2], the authors demonstrate the usefulness of
the ability to specify quality and solve the model-checking and synthesis problems for LTLO.

Already in the Boolean setting, both model checking and synthesis rely on the specifica-
tion to accurately reflect the designer’s intention. One of the criticisms against formal method
is that the latter challenge, of coming up with correct specifications, is not much easier than
model checking or synthesis. Thus, formal methods merely shift the difficulty of develop-
ing correct implementations to that of developing correct specifications [13]. Property assur-
ance is the activity of eliciting specifications that faithfully capture designer intent [8, 21].
One approach for property assurance is to challenge given specifications with sanity checks
like non-validity, satisfiability, and vacuity [15]. More involved quality checks are studied in
the PROSYD project [20] 1. A second approach is that of automatic generation of specifica-
tions. This includes ideas from learning, where specifications given by means of automata
are learned from a sample of behaviors tagged as good or bad [6, 17], methods based on a
generation of specifications from basic patterns [11], and specification mining, where specifi-
cations are generated by analyzing the runs of the given system [4]. In the novel quantitative
setting, there is (yet) no experience in specification design nor tools or methods for property
assurance. In this paper, we introduce such a method and study the problem of automatically
generating the quality layer in LTLO formulas.

The design of an LTLO formula typically starts with an LTL formula on top of which
the designer adds the parameterized O operators. The underlying assumption behind our ap-
proach is that in practice it is easier for a designer to provide desired satisfaction values in
representative computations than to come up with quality constants that capture his intuition
of high and low quality. This resembles the classical process of learning a hypothesis from
tagged samples. Formally, an LTLO query is an LTLO formula in which some of the quality
constants are replaced by variables. A path constraint is a pair 〈π, I〉, where π is a lasso-
shaped path and I ⊆ [0, 1] is a closed interval. Consider an LTLO query ϕ with variables
in X . For an assignment f : X → [0, 1], we use ϕf to denote the LTLO formula obtained
from ϕ by replacing each variable x ∈ X by f(x). The LTLO query problem is to find, given
an LTLO query ϕ and a set C of path constraints, an assignment f to the variables in ϕ so
that ϕf satisfies all the constraints (or returns that no such assignment exists). Thus, for all
〈π, I〉 ∈ C, the satisfaction value of ϕf in π is in the interval I . Note that I may (but need not)
be a single point. Note that beyond the restrictions on the quality constants in ϕf that follow
from the constraints, restrictions may be induced also by repeated occurrences of the same
variable. Subtle connections between different constants can be specified too, using nesting.

1 A related line of research is that of specification debugging [5], where, in the process of model check-
ing, counterexamples are automatically clustered together in order to make the manual debugging of
temporal properties easier.



In practice, however, most queries are simple (that is, each variable appears only once) and
are free of nesting.

As an example, consider the following specification: “After a request, an ack should ideally
be given immediately and hold for two time units. An ack that holds only for one time unit
is also acceptable, provided that it is given within two time units”. A designer that wants to
formalizes “ideally” and “acceptable” may have a clear idea that he wants to upper bound the
satisfaction value of a policy with a single time-unit ack by 3

4 but may find it difficult to come
up with the exact “penalty” for a delay in this case. This situation is captured by the following
LTLO query:

G(req → ((Xack ∧ XXack) ∨ O 3
4
(Ox(Xack) ∨ Oy(XXack)))).

The satisfaction value of an induced LTLO formula in a computation with an ideal ack policy
is 1. In a computation with a single time-unit ack, it is at most 3/4, to be further tuned down
by the assignments to x and y. The designer does find it easy to grade given behaviours. For
example, he may declare that a computation ({req}, {ack})ω is not that bad, and satisfies
the specification with quality 3

4 . Also, the path ({req}, ∅, {ack})ω satisfies it with quality in
[ 13 ,

1
2 ]. A solution to the corresponding LTLO query problem suggests an assignment to x and

y that satisfies the designer’s constraints. For example, x = 1 and y = 1
2 . As we discuss in

Section 2.2, it is possible to automate not only the generation of quality constraints, but also
the generation of LTLO queries out of LTL formulas.

Before we continue to describe our results, let us review other settings with partially-
specified systems or specifications. In the Boolean setting, reasoning about partially-specified
systems is useful in automatic partial synthesis [22] and program repair [14]. From the other
direction, partially-specified specifications are used for system exploration. In particular, in
query checking [10], the specification contains variables, and the goal is to find an assignment
to the variables with which the explored system satisfies the specification. While the formu-
lation of the problem is similar, the motivation is very different, as the goal is to explore,
synthesize, or reason about the system, whereas our goal here is automatic generation of spec-
ifications. The fact we consider the quantitative setting makes the underlying considerations
and algorithms very different too. In the quantitative setting, related work includes parameter-
ized weighted containment [7], where a partially specified weighted automaton is given, and
the goal is to find an assignment to the missing weights such that a containment constraint
is met. An orthogonal research direction is that of parametric real-time reasoning [3]. There,
the quantitative nature of the automata origins from real-time constraints, the semantics is
very different, and the goal is to find restrictions on the behavior of the clocks such that the
automata satisfy certain properties.

We start by showing that in general, the LTLO query problem is NP-hard. Checking
whether a suggested assignment satisfies the set of constraints can be done in polynomial
time, suggesting that the problem is in NP. One, however, also has to consider the domain and
representation of the interval constraints and the assignment. For example, the only solution
to the query OxOxp and the constraint 〈{p}ω, 1

2 〉 assigns to x the value
√

2, which is irrational
and thus does not have a finite representation in a binary expansion. For common queries,
in particular simple queries without nesting of variables, we are able to prove that a “short”
satisfying assignment exists, making the problem NP-complete.

We then proceed to study a fragment of the problem, where the LTLO queries are simple
and the set of constraints includes a single computation. We show that in this case, the problem



can be solved in polynomial time.2 Our polynomial algorithm is based on an analysis of the
search space, showing that the infinitely many possible assignments to each of the variables x
in the query can be rounded up to linearly many ones, depending on the desired satisfaction
value and the structure of the formula inside which x is nested. The induced space of possible
assignments can be then searched efficiently.

Finally, we use the case of a single constraint in a heuristic for the general case. To do
so, it is convenient to consider the problem in a geometrical perspective: consider an LTLO

query ϕ over k variables and a set of constraints C. Every constraint 〈π, I〉 ∈ C induces a set
S〈π,I〉,ϕ ⊆ [0, 1]k of solutions to that constraint. The LTLO query problem for C amounts to
finding a point f ∈

⋂
〈π,I〉∈C S〈π,I〉,ϕ. 3 The geometrical perspective makes it easy to define

an optimization problem: we seek an assignment that minimizes the sum (over 〈π, I〉 ∈ C) of
distances to S〈π,I〉,ϕ. We suggest three heuristics for finding an assignment, and evaluate them
according to two loss , namely ways to define distances in the [0, 1]k space: number of con-
straints satisfied, and distance in L2. The three heuristics combine a consideration of external
assignments as well as the center of gravity of the assignments for the underlying constraints.
In order to check and demonstrate the usefulness of our algorithms, we implemented our al-
gorithms and examined the quality constants generated for various specifications. As detailed
in Section 6, our results show the effectiveness and favorable outcome of the approach and
algorithms.

2 The Logic LTLO

The logic LTLO is a multi-valued logic that extends the linear temporal logic LTL with a
parameterized quality operator∇λ. The logic, along with model-checking and synthesis algo-
rithms for it, was introduced in [2]. We start by defining its syntax and semantics. Let AP be
a set of Boolean atomic propositions4. An LTLO formula is one of the following:

– True, False, or p, for p ∈ AP .
– ¬ϕ, ϕ ∨ ψ, Oλϕ, Xϕ, or ϕUψ, for LTLO formulas ϕ and ψ, and a quality constant
λ ∈ [0, 1].

The semantics of LTLO is defined with respect to infinite computations over AP . Each
position in the computation corresponds to a valuation to the atomic propositions, thus a com-
putation is a word π = π0, π1, . . . ∈ (2AP )ω . We use πi to denote the suffix πi, πi+1, . . . of
π. The semantics maps a computation π and an LTLO formula ϕ to the satisfaction value of
ϕ in π, denoted [[π, ϕ]]. The satisfaction value is in [0, 1], defined by induction on the structure
of ϕ as described in Table 1 below. As with LTL, we use Fψ (“eventually”) and Gψ (“al-
ways”) as abbreviations for TrueUψ and ¬F¬ψ, respectively, as well as the standard Boolean
abbreviations ∧ and→.

Evaluating LTLO formulas on lasso computations We say that a computation π is a lasso
if π = u · vω , for finite computations u, v ∈ (2AP )∗ with v 6= ε. We refer to u as the
prefix of the lasso and to v as its cycle. The standard bottom-up labeling algorithm for model

2 We note that both requirements, of simple queries and a singleton constraint are needed; removing
one of them we are back to NP-hardness.

3 The main difficulty in solving the LTLO query problem is that even for a single constraint, this set
may not be convex, and therefore not amenable to methods of convex analysis.

4 As discussed in Remark 1, it is possible to extend the definition as well as our results to weighted
atomic propositions with values in [0, 1].



Formula Satisfaction Value
[[π, True]] 1
[[π, False]] 0

[[π, p]]
1 if p ∈ π0

0 if p /∈ π0

[[π,¬ϕ]] 1− [[π, ϕ]]

[[π, ϕ ∨ ψ]] max([[π, ϕ]], [[π, ψ]])

[[π,Oλϕ]] λ · [[π, ϕ]]

[[π,Xϕ]] [[π1, ϕ]]

[[π, ϕUψ]] max
i≥0
{min{[[πi, ψ]], min

0≤j<i
[[πj , ϕ]]}}

Table 1. The semantics of LTLO.

checking LTL formulas with respect to lasso computations can be easily extended to LTLO.
The algorithm is based on the simple observation that if [[πi, ψ]] is known for all i ≥ 0 and
subformulas ψ of ϕ, then it is possible to calculate, in time linear in |u|+|v|, the values [[πi, ϕ]],
for all i ≥ 0. Indeed, the periodicity of π implies that there are only |u|+ |v| different suffixes
to consider, and, by the semantics of LTLO, the satisfaction value of ϕ can be easily inferred
from the satisfaction value of its subformulas. The only non-trivial case is when ϕ = ψ1Uψ2,
but also there, one can start with the satisfaction value of ψ2 and then repeatedly go back the
lasso checking for every suffix whether, taking the satisfaction value of ψ1 into an account, it is
worthwhile to postpone the satisfaction of the eventuality. To conclude, we have the following.

Proposition 1. Given an LTLO formulaϕ and finite computations u, v ∈ (2AP )∗, calculating
[[u · vω, ϕ]] can be done in time O(|ϕ| · (|u|+ |v|)).

2.1 LTLO queries

Let X be a finite set of variables. An LTLO query (over X ) is an LTLO formula in which
some of the quality constants are replaced with variables from X . For example, ϕ = G(req →
((∇x1X(read∨∇x2Xread))∨(∇x3Xwrite)∨(∇ 3

4
halt))) is an LTLO query over {x1, x2, x3}.

We say that an LTLO query is simple if each of its variables occurs only once. The depth of
an LTLO query ϕ is the maximal nesting depth of variables in ϕ. For example, ϕ above is
simple and is of depth 2. Note that, as in ϕ above, not all quality constraints are replaced by
variables. For an LTLO query ϕ, we denote by var(ϕ) the set of variables x ∈ X such that
Oxψ is a subformula of ϕ. Given an assignment f : X → [0, 1], we define ϕf to be the LTLO

formula obtained from ϕ by replacing every occurrence of x ∈ X with f(x). Note that an
assignment f as above prioritizes the different possible ways to satisfy the specification. In ϕ
above, the assignment to x1 and x3 reflects the priority of the designer as to whether a read
lock or a write lock is granted after a request, and the assignment to x2 reflects the cost of a
delayed read lock.

Consider an LTLO query ϕ. A path constraint is a pair 〈π, I〉 such that π ∈ (2AP )ω and
I ⊆ [0, 1] is a closed interval; that is, [a, b] for 0 ≤ a ≤ b ≤ 1. A lasso constraint is a path
constraint in which π is a lasso. When the interval I is a single point, thus a = b, we only
state the point in the specification of the constraint.

The LTLO query problem is to decide, given an LTLO query ϕ and a set C of lasso
constraints, whether there exists an assignment f to var(ϕ) such that [[π, ϕf ]] ∈ I for all
〈π, I〉 ∈ C. We then say that the assignment f is a solution to 〈ϕ, C〉.



2.2 Generating LTLO queries

Our algorithms for solving the LTLO query problem takes as input an LTLO query, which is
up to the designer to write. While the semantics of LTLO is easy to understand and use, there
are some caveats one should be aware of when designing LTLO formulas and queries. In
this section we demonstrate methods to soundly design LTLO query. Moreover, the proposed
methods can be automated, so that the designer may actually start with an LTL formula, rather
than an LTLO query.

Typically, LTLO formulas are obtained from LTL formulas by adding the Oλ operator to
various components. A common pattern for LTL specifications is a conjunction of properties.
Consider a conjunction α ∧ β. Assume that the satisfaction of β is less crucial than that of
α. Specifically, if only β holds, we want the satisfaction value to be 0, but if only α holds,
the satisfaction value is 3

4 . Note that a naive introduction of the Oλ operator may result in an
undesirable behavior. In particular, according to the semantics of LTLO, the satisfaction value
of α ∧ O 3

4
β is at most 3

4 , and the contribution of α, for values above 3
4 , is irrelevant. We now

demonstrate two sound methods for adding Oλ operators.
As discussed in Section 1, different ways of satisfying a formula induce different qualities.

A conjunction has only one way to be satisfied, thus in order to prioritize its components we
decompose its components into a disjunction of cases, on which we apply the Oλ operator.
For example, α ∧ β becomes Oλ1(α ∧ β) ∨ (Oλ2α) ∨ (Oλ3β). After this transformation, the
intuition that each component is graded differently is met.

The second method is to use negations to dualize the behavior of Oλ. Consider the formula
¬O(1−λ)¬ϕ for some formula ϕ. Note that [[π,¬O(1−λ)¬ϕ]] = 1− (1− λ)(1− [[π, ϕ]]). We
use the abbreviation Hλϕ = ¬O1−λ¬ϕ. Intuitively, Hλϕ measures how important it is for
ϕ to hold. In particular, if [[π, ϕ]] = 1, then Hλϕ = 1, and if [[π, ϕ]] = 0, then Hλϕ = λ.
The operator Hλ does work well with conjunctions: for the formula α ∧ β, we can specify
(Hλ1α) ∧ (Hλ2β). This captures the intuition that if α and β both hold, the satisfaction value
is 1, but if just one holds, the satisfaction value does not decrease to 0.

For a conjunction ϕ = α ∧ β, let ϕ′ = Oz(α ∧ β) ∨ (Oxα) ∨ (Oyβ) and ϕ′′ = (Hxα) ∧
(Hyβ). The following table demonstrates the difference in the semantics in case α and β get
only Boolean satisfaction values.

Formula α β α ∧ β
ϕ′ x y max {x, y, z}
ϕ′′ y x min {x, y}

The difference can be summarized intuitively as follows. In ϕ′, the value x indicates the gain
from having α. In ϕ′′, it indicates the loss from not having α. The parameter z, used only in
ϕ′ should be greater than both x and y, meaning α ∧ β actually gets the highest satisfaction
value.

3 Solving the LTLO Query Problem
In this section we study the complexity of the LTLO query problem and show that it is NP-
hard. As follows from Proposition 1, given an LTLO query ϕ, a set C of lasso constraints, and
an assignment f : var(ϕ)→ [0, 1], it is possible to check in linear time whether f is a solution
for 〈ϕ, C〉. Indeed, for each of the lasso constraints 〈π, I〉 ∈ C we can calculate [[π, ϕf ]] and
verify that it is in I . This suggests that the LTLO query is in NP, as given a witness assignment
f , we can verify it efficiently. Membership in NP, however, also requires the witness f to be
polynomial in the ϕ and C.



The latter requirement add to the picture considerations like the domain and presentation
of the interval constraints. A natural suggestion is to assume that all intervals I are of the
form [a, b] for rational numbers 0 ≤ a, b ≤ 1, given by their binary expansion. As we now
demonstrate, things are involved already in this case. To see why, consider the query OxOxp
and the constraint 〈{p}ω, 1

2 〉. The single solution to the problem is f with f(x) =
√

2. But√
2 is irrational, and therefore its binary expansion is infinite. Thus, while it is possible that

the problem is in NP, describing a witness for an input requires a more sophisticated way of
encoding solution, which is of debatable interest to the CAV community. As good news, in
Section 4.1 we show that for typical instances of the problem, namely simple queries of depth
1, short witnesses exist, making the problem NP-complete for them. The proof requires results
we develop in Section 4. Here, we describe the lower bound.

Theorem 1. The LTLO query problem is NP-hard.

Proof. We describe a reduction from 3-SAT. Let θ = (l11 ∨ l12 ∨ l13) ∧ ... ∧ (lk1 ∨ lk2 ∨ lk3) be
a 3-CNF formula. We construct an LTLO query ϕ and a set C of constraints such that θ is
satisfiable iff there is a solution for 〈ϕ, C〉. Let X = {x1, ..., xm} be the set of variables that
appear in θ. We defineAP = {p1, n1, ..., pm, nm} andX = {y1, z1, . . . , ym, zm}. Intuitively,
the proposition pi (resp. ni) stands for “the variable xi appears positively (resp. negatively)
in the clause”, and we define the query and the constraints so that the variable yi (resp. zi) is
assigned 1 when xi is assigned True (resp. False).

We define ϕ = G(Oy1p1 ∨ Oz1n1 ∨ ... ∨ Oympm ∨ Ozmnm). We first have to ensure
that in every solution to the query, at least one of the variables {yi, zi} gets value 0, for all
1 ≤ i ≤ m. This is done by the constraint 〈πi, 0〉, with πi = {pi}{ni}(AP )ω . Note that
in order for [[πi, ϕ]] to be 0, it must be that either [[{pi},Oyipi]] = 0 or [[{ni},Ozini]] = 0,
implying that indeed at least one of the variables {yi, zi} has value 0.

The family of m constraints above guarantees that a solution f to the query induces a
truth assignment to X: the variable xi is assigned True iff f(yi) = 1. It is left to ensure
that f induces a satisfying assignment. This is done by the constraint 〈π, 1〉, where π =
{s11, s12, s13} · · · {sk1 , sk2 , sk3} · (AP )ω is such the i-th position corresponds to the i-th clause
and ensures that at least one of its literals gets value True. Accordingly, sij is pt if lij = xt and
is nt if lij = ¬xt. Note that in order for [[π, ϕ]] to be 1, it must be that [[{si1, si2, si3},Oytpt]] = 1
or [[{si1, si2, si3},Oztzt]] = 1, for some t such that xt appears in the i-th clause. If xt appears
positively in the clause, then one of the sij’s is pt, and if xt appears negatively, then one of
them is nt. Thus, in a solution f , one of the corresponding variables – that is, yt in the first
case and nt in the second, is assigned 1.

For example, let θ = (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x3). Then, ϕ = G(Oy1p1 ∨Oz1n1 ∨
Oy2p2∨Oz2n2∨Oy3p3∨Oz3n3), and C contains the constraints 〈{p1, n2, p3}{n1, p2, p3}(AP )ω, 1〉
and 〈{pi}{ni}(AP )ω, 0〉, for i ∈ {1, 2, 3}. The formula θ is satisfiable. For example, the sat-
isfying assignment in which x1 and x2 are True and x3 is False induces a solution to 〈ϕ, C〉
in which (y1, z1) = (1, 0), (y2, z2) = (1, 0), and (y3, z3) = (0, 1). It is easy to see that the
reduction is polynomial.

Theorem 1 motivates a study of special easy cases of the LTLO query problem. Since the
reduction in the proof of Theorem 1 uses a query with multiple constraints, a natural candidate
is the case of a single constraint. Lemma 1 below hints that this case is not easier.

Lemma 1. Let ϕ be a simple LTLO query over a set X of variables and let C be a set of
lasso constraints of the form 〈π, 1〉 or 〈π, 0〉. Then, there exists an LTLO query ϕ′ over X
and a lasso π such that for every assignment f : X → [0, 1], we have that f is a solution



to (ϕ′, {〈π, 0〉}) iff f is a solution to 〈ϕ, C〉. In addition, the length of the prefix of π is the
length of the longest prefix of a lasso in C, and the length of its cycle is the lcm (least common
multiple) of the lengths of the cycles in the lassos in C.

Proof. LetAP be the set of atomic propositions inϕ, and let C = {〈u1 · vω1 , c1〉, . . . , 〈uk · vωk , ck〉}.
We define AP ′ as k disjoint copies of AP , thus AP ′ = AP ×{1, . . . , k}. We define ϕj to be
the LTLO query obtained from ϕ by replacing each atomic proposition p ∈ AP by the atomic
proposition 〈p, j〉 ∈ AP ′. Let u, v ∈ 2AP

′
be such that for all 1 ≤ j ≤ k, the projection of

u · vω on AP × {j} agrees with uj · vωj . It is easy to define u and v as above by taking u
of length m = maxi |ui| and v of length ` = lcm(|v1|, ..., |vk|). Indeed, the labeling of u by
AP ×{j} is obtained by concatenating to uj a prefix of vωj of lengthm−|uj | and the labeling

of v by AP × {j} is then obtained from v′j by the corresponding shift of v`/|vj |j .
Now, we define ϕ′ =

∧k
j=1 ψj , where ψj is either ϕj , in case cj = 1, or is ¬ϕj , in case

cj = 0. Consider an assignment f : X → [0, 1]. Since ϕ′ is defined as a conjunction, then
the constraint 〈u · vω, 1〉 is met for ϕ′ iff [[u · vω, ψfj ]] = 1 for all 1 ≤ j ≤ k, which, by the
definition of ψj , holds iff f is a solution to 〈ϕ, {〈uj · vωj , cj〉}〉. To conclude, f is a solution
to 〈ϕ′, {〈u · vω, 1〉}〉 iff f is a solution to 〈ϕ, C〉.

While the single lasso constructed in Lemma 1 may be exponential in the original con-
straints, examining the lassos that are used in the reduction in the proof of Theorem 1, we see
that they all have cycles of length 1. Therefore, Lemma 1 together with the reduction there
imply that the special case of a single constraint is not easy. Formally, we have the following.

Theorem 2. The LTLO query problem is NP-hard even for the case of a single lasso con-
straint.

4 A Feasible Special Case
While Theorem 2 implies that the LTLO query problem is hard already for a single constraint,
the transformation described in the proof of Lemma 1 generates formulas that are not simple.
Indeed, the transformation is based on a relation between multiple constraints and multiple
occurrences of a variable. In this section we show that in a setting with both limitations, the
LTLO query problem can be solved efficiently. Formally, we prove the following.

Theorem 3. The LTLO query problem for simple queries and a single constraint can be
solved in polynomial time.

In Section 5, we show that Theorem 3 and the algorithm developed for its proof are useful
in approximation and heuristic algorithms for the general case.

Let ϕ be a simple LTLO query over AP and X , and let π be a computation. Let k = |X |.
Consider the function µπ,ϕ : [0, 1]k → [0, 1] defined by µπ,ϕ(f) = [[π, ϕf ]].

We start with some useful observations.

Lemma 2. For all computations π and LTLO queries ϕ, the function µπ,ϕ is continuous. That
is, for every infinite sequence (an)∞n=1 of points in [0, 1]k such that limn→∞ an = a, it holds
that limn→∞(µπ,ϕ(an)) = µπ,ϕ(a).

Proof. By the semantics of LTLO, the satisfaction value of an LTLO formula in a computation
is obtained from the values 0 and 1 by repeated applications of the operations min,max,
subtraction from 1, and multiplication by λ ∈ [0, 1]. Since all these operations are continuous,
so is the function µπ,ϕ.



Consider a variable x ∈ X . Since ϕ is simple, the variable x is either positive in ϕ, in
case the subformula Oxψ is in the scope of an even number of negation, or is negative in ϕ,
otherwise. We refer to the positivity or negativity of x in ϕ as its polarity in ϕ.

Lemma 3. For all computations π and LTLO queries ϕ, the function µπ,ϕ is monotonic in
each variable. Specifically, for every variable x ∈ X , if x is positive in ϕ then µπ,ϕ is increas-
ing with x and if x is negative in ϕ then µπ,ϕ is decreasing with x.

Proof. Among the four operations mentioned in the proof of Lemma 2, the operations min,max,
and multiplication by λ ∈ [0, 1] are increasing with their operands, whereas subtraction from
1 is decreasing with its operand. Since the latter is applied whenever a negation is evaluated,
the claim follows form the definition of the polarity of x.

We note that full proofs of Lemmas 2 and 3 involve an (easy) induction on the structure of
ϕ.

The idea behind our polynomial algorithm is to limit the search space for a satisfying
assignment. Before defining the limited search space, let us first observe that an LTLO formula
has finitely (in fact, linearly many) possible satisfaction values. We define the set of possible
values of ϕ, denoted val(ϕ), by induction on the structure of ϕ as follows.

– If ϕ = p ∈ AP , then val(p) = {0, 1}.
– If ϕ = ψ1 ∨ ψ2 or ϕ = ψ1Uψ2, then val(ϕ) = val(ψ1) ∪ val(ψ2).
– If ϕ = ¬ψ, then val(ϕ) = {1− v : v ∈ val(ψ)}.
– If ϕ = Xψ, then val(ϕ) = val(ψ).
– If ϕ = Oλψ, then val(ϕ) = {λ · v : v ∈ val(ψ)}.

It is easy to prove that for every path π it holds that [[π, ϕ]] ∈ val(ϕ).
We start by defining the limited search space for LTLO queries of depth 1. We will later

generalize the definition to all depths. Let ϕ be a simple LTLO query of depth 1. For x ∈
var(ϕ) and c ∈ [0, 1] we define the set of relevant values for x with respect to ϕ and c,
denoted val(x, ϕ, c), by induction on the structure of ϕ as follows.

– If ϕ = Oxψ, for a LTLO formula ψ, then val(x, ϕ, c) = { cv : v ∈ val(ψ) and v ≥ c}.
Note that since ϕ is of nesting depth 1, then ψ has no variables, and this is the base case
for the induction.

– If ϕ = ψ1∨ψ2 or ϕ = ψ1Uψ2, then val(x, ϕ, c) = val(x, ψi, c), for the single i ∈ {1, 2}
such that x ∈ var(ψi).

– If ϕ = Xψ, then val(x, ϕ, c) = val(x, ψ, c).
– If ϕ = ¬ψ, then val(x, ϕ, c) = val(x, ψ, 1− c).
– Ifϕ = Oλψ, we distinguish between two cases. If λ ≥ c, then val(x, ϕ, c) = val(x, ψ, cλ ).

Otherwise, val(x, ϕ, c) = ∅.

Lemma 4 below justifies the restricted search space. Consider a value u ∈ [0, 1]. Let
upx ,ϕ,c(u) and downx ,ϕ,c(u) be the “rounding” up and down of u to the nearest value in
val(x, ϕ, c). Formally, upx ,ϕ,c(u) = min {v : v ∈ val(x , ϕ, c) and v ≥ u} and downx ,ϕ,c(u) =
max {v : v ∈ val(x , ϕ, c) and v ≤ u}.

Consider an assignment f : X → [0, 1]. For a variable x ∈ X , define the assignments
f+
x,ϕ,c and f−x,ϕ,c as the assignments obtained from f by leaving the assignments to all vari-

ables except x unchanged and rounding the value of x up or down to the nearest value in



val(x, ϕ, c). The decision whether to round the value of x up or down depends on the + and
− indication as well as in the polarity of x in ϕ. Formally, we have the following.

f+
x,ϕ,c(x) =

{
upx ,ϕ,c(f (x )) if x is positive in ϕ,
downx ,ϕ,c(f (x )) if x is negative in ϕ,

and dually (switch positive and negative) for f−x,ϕ,c(x).

Lemma 4. Consider a simple LTLO query ϕ of depth 1 and an assignment f to var(ϕ). Let
c ∈ [0, 1], and let π be a computation. Then,

1. If [[π, ϕf ]] ≤ c, then [[π, ϕf
+
x,ϕ,c ]] ≤ c.

2. If [[π, ϕf ]] ≥ c, then [[π, ϕf
−
x,ϕ,c ]] ≥ c.

Before we prove the lemma, let us note that by the monotonicity of LTLO queries, increas-
ing the value of a variable x that appears positively in ϕ can only increase the satisfaction value
of ϕ (and dually for reducing the value of x or for the case of a variable that appears nega-
tively). The claim in Lemma 4, however, is different and is much stronger, as it states that
we can actually increase the value of a variable that appears positively without increasing the
value of ϕ. More precisely, if the satisfaction value of ϕf in π is below c, then we can round
the value of x up to the closest value in val(x, ϕ, c) and still keep the satisfaction value below
c.

Proof. The proof proceeds by induction on the structure of ϕ. We prove the first claim, the
second is dual.

– If ϕ = p ∈ AP , then since there are no variables in ϕ, changing f does not affect its
satisfaction value, and we are done.

– If ϕ = ψ1 ∨ ψ2, assume w.l.o.g that x ∈ var(ψ1). Since [[π, ϕf ]] ≤ c, then [[π, ψf1 ]] ≤ c

and [[π, ψf2 ]] ≤ c. Changing f to fxx,ϕ,c does not affect the satisfaction value of ψ2, and by

the induction hypothesis, [[π, ψ
f+
x,ψ1,c

1 ]] ≤ c, so [[π, ϕf
x
x,ϕ,c ]] ≤ c.

– If ϕ = Xψ, then the claim follows easily from the induction hypothesis.
– If ϕ = ¬ψ, then [[π, ϕf ]] ≤ c implies [[π, ψf ]] ≥ 1 − c. Observe that f+

x,ϕ,c agrees with
f−x,ψ,1−c. Thus, by the induction hypothesis, applied to the fact [[π, ψf ]] ≥ 1 − c, we get

that [[π, ψf
−
x,ψ,1−c ]] ≥ 1− c, or equivalently [[π, ψf

+
x,ϕ,c ]] ≥ 1− c. So, [[π, ϕf

+
x,ϕ,c ]] ≤ c, and

we are done.
– If ϕ = Oλψ, then [[π, ϕf ]] ≤ c implies [[π, ψf ]] ≤ c/λ (if λ = 0, then this is a degenerate

case). By the definition of val(x, ϕ, c), we have that f+
x,ϕ,c agrees with f+

x,ψ,c/λ. Thus, by

the induction hypothesis, we have that [[π, ψf
+
x,ϕ,c ]] ≤ c/λ, so [[π, ϕf

+
x,ϕ,c ]] ≤ c, and we

are done.
– If ϕ = Oxψ, then since ϕ is of depth 1, we know that ψ has no variables. Assume

that [[π, ϕf ]] ≤ c, and assume, by way of contradiction, that [[π, ϕf
+
x,ϕ,c ]] > c. Since

µπ,ϕ is continuous (Lemma 2), then by the intermediate value theorem there exists an
assignment h that agrees with f and f+

x,ϕ,c on all variables but x and [[π, ϕh]] = c. We
claim that h(x) ∈ val(x, ϕ, c). Indeed, since [[π, ϕh]] = c, then y ·[[π, ψ]] = c, so h(x)/c ∈
val(ψ), which by definition implies that h(x) ∈ val(x, ϕ, c). This, however, contradicts
the definition of f+

x,ϕ,c(x) as the rounding of f(x) to the closest value in val(x, ϕ, c).



– If ϕ = ψ1Uψ2, we proceed as follows. By the semantics of U, the fact [[π, ϕf ]] ≤ c implies
that for every i ≥ 0, it holds that min {[[πi, ψf2 ]],min0≤j<i {[[πj , ψf1 ]]}} ≤ c. Thus, for
every i ≥ 0 either [[πi, ψf2 ]] ≤ c or there exists 0 ≤ j < i such that [[πj , ψf1 ]] ≤ c. Assume
x ∈ var(ψ1) and consider the assignment f+

x,ϕ,c. For every i ≥ 0, if [[πi, ψf2 ]] ≤ c then

[[πi, ψ
f+
x,ϕ,c

2 ]] ≤ c (since the value is unchanged). If [[πj , ψf1 ]] ≤ c for some j < i, then

by the induction hypothesis, we have that [[πj , ψ
f+
x,ϕ,c

1 ]] ≤ c. We conclude that for every

i ≥ 0, we have that min {[[πi, ψf
+
x,ϕ,c

2 ]],min0≤j<i {[[πj , ψ
f+
x,ϕ,c

1 ]]}} ≤ c, implying that
[[π, ϕf

+
x,ϕ,c ]] ≤ c. The case where x ∈ var(ψ2) is similar.

We can now prove that the restriction of the search space to values in val(x, ϕ, c) is al-
lowed.

Lemma 5. Let ϕ be a simple LTLO query of depth 1, let c ∈ [0, 1], and let π be a path. If
there exists an assignment f such that [[π, ϕf ]] = c, then there also exists an assignment g
such that for every x ∈ var(ϕ) it holds that g(x) ∈ val(x, ϕ, c) and [[π, ϕg]] = c.

Proof. Consider a simple LTLO query ϕ of depth 1 and an assignment f to var(ϕ). Let
c ∈ [0, 1], and let π be a computation. By the monotonicity of µπ,ϕ, Lemma 4 implies that if
[[π, ϕf ]] = c, then [[π, ϕf

+
x,ϕ,c ]] = c.

Let f be such that [[π, ϕf ]] = c. The assignment g is obtained by repeating the following
process all variables x ∈ var(ϕ) in an arbitrary order: if f(x) ∈ val(x, ϕ, c), then g(x) =
f(x). Otherwise, we define g(x) to be f+

x,ϕ,c(x). By the above, [[π, ϕg]] = c.

Consider a simple LTLO query ϕ over X . By Lemma 5, the search for a solution f to
a single constraint with a point interval c involves a search in finitely many possible assign-
ments – these that map each variable x ∈ var(ϕ) to values in val(x, ϕ, c). By Lemma 3
(monotonicity of assignments), the search can combine a binary search for the assignment for
each x ∈ var(ϕ) with an ordering of the different variables. We will get back to this point
when we describe our experimental results in Section 6.

The search described above assumes simple queries of depth 1 and constraints with point
intervals. We now remove both assumptions. Let fmax and fmin be the assignments that max-
imizes and minimizes the value of ϕ. Thus, fmax (x) is 1 if x appears positively in ϕ and is 0
otherwise, and dually for fmin . We define the LTLO formulas ϕmax = ϕf

max

and ϕminϕf
min

.
Note that O1ψ and O0ψ subformulas can be replaced by ψ and False, respectively.

For a simple LTLO query ϕ (of an arbitrary depth), let ϕ? be the LTLO formula obtained
from ϕ by replacing every subformula of the form Oxψ by Oxψmax . Note that ϕ? is of depth
1. By Lemma 3 (monotonicity of assignments), for every computation π, LTLO query ψ,
and assignment f , we have [[π, ψf ]] ≤ [[π, ψmax ]]. Thus, replacing ψ by ψmax may cause the
satisfaction value of ψ to go above a desired bound. As we show below, however, in this case
we can play with the assignment to x in order “tune down” the satisfaction value of ψmax .

Lemma 6. Let ϕ be a simple LTLO query, and let 〈π, I〉 be a constraint. The LTLO query
〈ϕ, 〈π, I〉〉 has a solution iff the query 〈ϕ?, 〈π, I〉〉 has a solution.

Proof. First, sinceϕ? is obtained by a partial assignment to the variables ofϕ, then if (ϕ?, 〈π, I〉)
has a solution, so does (ϕ, 〈π, I〉). For the other direction, let f be an assignment such that
[[π, ϕf ]] ∈ I . Consider the satisfaction value of each subformula Oxψ of ϕ. By the seman-
tics of LTLO, we have that [[π, (Oxψ)f ]] = f(x) · [[π, ψf ]]. By Lemma 3, we have that



[[π, ψf ]] ≤ [[π, ψmax ]]. If the latter is not an equality, consider an assignment g that is iden-
tical to f except that the variables in var(ψ) are as in ψmax and g(x) = [[π,ψf ]]

[[π,ψmax ]] (note that
[[π, ψf ]] < [[π, ψmax ]] implies that [[π, ψmax ]] 6= 0). We now have [[π, (Oxψ)g]] = [[π, (Oxψ)f ]].
Thus, [[π, (ϕ?)g]] = [[π, ϕf ]] ∈ I , so 〈ϕ?, 〈π, I〉〉 has a solution.

Lemma 6 implies that we can use our algorithm also for formulas of depth greater than 1
by applying the algorithm to ϕ?. It is left to extend the algorithm to handle interval constraints.
That is, given a simple LTLO query ϕ and a lasso constraint 〈π, I〉 such that I ⊆ [0, 1], our
goal is to decide whether 〈ϕ, 〈π, I〉〉 has a solution. We do this as follows. First, compute a =
[[π, ϕmin ]] and b = [[π, ϕmax ]]. If I ∩ [a, b] = ∅, then, as [[π, ψmin ]] ≤ [[π, ψf ]] ≤ [[π, ψmax ]],
we can conclude that there is no solution to 〈ϕ, 〈π, I〉〉. Otherwise, by the continuity of µπ,ϕ,
every value in c ∈ [a, b] can be attained by µπ,ϕ, so one can choose any value c ∈ I ∩ [a, b],
and find a solution to 〈ϕ, 〈π, c〉〉.

Remark 1. Our definition of computations assumes Boolean atomic propositions. It is easy to
extend our setting and results to computations over weighted atomic propositions. Let WP be
a finite set of weighted atomic propositions over some domain D. The domain D may be infi-
nite (say, the natural numbers) and different propositions may be over different domains. Each
position in the computation is then a function in DWP , and the semantics of LTLO is as in
the Boolean case, except that [[π, p]], for p ∈WP is π0(p). The solution of the corresponding
LTLO query is similar to the one described above, except that the definition of val(ψ), and
consequently also val(x, ϕ, c), should be adjusted to reflect the fact the weighted propositions
in ψ can take values in D. Since each lasso commutation has only finitely many positions, the
number of the values to be considered is still linear in the input to the problem.

4.1 NP completeness of the LTLO query problem for simple queries

Lemma 5 also gives us an upper bound to complete Theorem 1 for simple LTLO queries of
depth 1. Given an LTLO query ϕ, a set of constraints C = {〈πi, [ai, bi]〉}mi=1, and a variable
x, we define val(x, ϕ, C) =

⋃m
i=1 val(x, ϕ, bi). That is, val(x, ϕ, C) includes the restricted

search space of the upper end points of the intervals in the constraints in C.

Lemma 7. Let ϕ be a simple LTLO query of depth 1, and let C be a set of constraints. If
there exists a solution f for 〈ϕ, C〉, then there also exists a solution g such that for every
x ∈ var(ϕ), it holds that g(x) ∈ val(x, ϕ, C).

Proof. Let C = {〈πi, [ai, bi]〉}mi=1 and let f be a solution for 〈ϕ, C〉. Let D = {b1, ..., bm},
and consider a variable x. If f(x) /∈ val(x, ϕ, C), then in particular f(x) /∈ val(x, ϕ, d)
for all d ∈ D. Let d̂ = arg min {|f+

x,ϕ,d(x)− f(x)| : d ∈ D}. By definition, f+

x,ϕ,bd(x) ∈
val(x, ϕ, C). We claim that the assignment g = f+

x,ϕ,bd is also a solution. Indeed, by Lemma 4,

for every constraint 〈πi, [ai, bi]〉 it holds that ai ≤ [[πi, ϕf ]] ≤ bi, so ai ≤ [[πi, ϕgi ]] ≤ bi,
where gi = f+

x,ϕ,bi
. For every 1 ≤ i ≤ m, the assignments gi and f , when regarded as

points in [0, 1]|X |, define a line segment (that is, {αf + (1− α)gi : α ∈ [0, 1]}). Since gi and
f differ only in their assignment to x, then so do all the points along the segment. Thus, all
the segments have some overlapping. The assignment g, by our choice of d̂, is in the overlap
defined by f and gi for every 1 ≤ i ≤ m. Thus, by Lemma 3 (monotonicity of µ), it holds that
ai ≤ [[πi, ϕg]] ≤ bi, so g is a solution. By repeating this process to each variable, we conclude
the proof.



Since the binary expansion of the values in val(x, ϕ, C) is polynomial in ϕ and C (with
intervals given by their binary expansion), Lemma 7 implies that a witness solution to a simple
LTLO query of depth 1 is polynomial. Since witnesses can be verified in linear time, we can
conclude with the following.

Theorem 4. The LTLO query problem for simple queries of depth 1 is NP-complete.

5 Approximations and Heuristics
In this section we discuss two heuristic schemes for the LTLO query problem. The motiva-
tion is twofold. First, our heuristic algorithms run in polynomial time, whereas, as studied
in Section 3, the problem is NP-hard. Second, in case a query does not have a solution, it
is helpful to find a sub-optimal, or partial, solution. In order to study sub-optimal solutions,
we must first formalize the LTLO query problem as an optimization problem. To do so, it is
convenient to consider the problem in a geometrical perspective: for an LTLO query ϕ and a
set of constraints C, let k = |var(ϕ)|. Every constraint 〈π, I〉 induces a set S〈π,I〉,ϕ ⊆ [0, 1]k

of solutions to that constraint. The LTLO query problem then amounts to finding a point
f ∈

⋂
〈π,I〉∈C S〈π,I〉,ϕ. We note that the main difficulty in solving the LTLO query problem

is that even for a single constraint, this set may not be convex (and therefore not amenable to
methods of convex analysis). Indeed, consider for example the query ψ = Oxp ∨ Oyq with
the constraint 〈{p, q}ω, 1〉. We have that SC,ψ = ([0, 1]× {1}) ∪ ({1} × [0, 1]), which is not
convex.

The geometrical perspective makes it easy to define an optimization problem: for an LTLO

query ϕ and a set of constraints C, find an assignment that minimizes the sum (over 〈π, I〉 ∈ C)
of distances to S〈π,I〉,ϕ. We still have some freedom in choosing a distance function. Since
we evaluate an assignment by the satisfaction value it induces on a path, it is natural to use
the satisfaction value as an underlying metric for the distance function. Traditionally, such
distance functions are known as loss functions, and we consider two common ones here. Let
x, y ∈ [0, 1].

– 0/1-loss, defined by `0/1(x, y) = 0 if x = y, and `0/1(x, y) = 1 if x 6= y.
– L2-loss, defined by ||x, y||2 = |x− y|.

Consider a loss function ` and an assignment f ∈ [0, 1]k. Recall that for a closed interval A ⊆
[0, 1] and x ∈ [0, 1], we have `(x,A) = min {`(x, y) : y ∈ A}. We define dist`(ϕ, C, f) =
1
|C|

∑
〈π,I〉∈C `([[π, ϕ

f ]], I). That is, the average loss. Then, the LTLO query optimization prob-
lem is to find arg minf∈[0,1]k {dist(ϕ, C, f)}. We observe that for `0/1, the problem is to find
an assignment that maximizes the number of satisfied constraints.

Since, for every loss functions `, an assignment f is a solution iff dist`(ϕ, C, f) = 0, the
problem of finding the optimum is NP-hard. As Theorem 2 shows, the LTLO query problem
is NP-hard even when a single constraint is allowed. Accordingly, since a nontrivial approxi-
mation of the the number of satisfied constraints must be greater than 0, it is NP-hard to even
approximate the problem (to any ratio) under `0/1.

Our use of LTLO queries for generating quality specifications makes `0/1 less appealing.
Indeed, it takes us back to the Boolean setting. We still describe here this approach, as it easily
suggests a naive approximation for the case the constraints are all pure upper- or lower-bounds:

Theorem 5. For simple LTLO queries and constraints whose intervals are of the form [0, b] or
[a, 1], the LTLO optimization problem with `0/1 loss has a 1

2 -approximation polynomial-time
algorithm.



Proof. Consider a simple LTLO query ϕ, and let 〈π, I〉 be a constraint. By Lemma 3, if
I = [0, b], for b ∈ [0, 1], then if there exists an assignment f such that [[π, ϕf ]] ∈ I , then
[[π, ϕmin ]] ∈ I . Similarly, if I = [a, 1], for a ∈ [0, 1], then [[π, ϕmax ]] ∈ I . Now, given a set
C of constraints of the above forms, we check which constraints are satisfied with fmax and
which are satisfied with fmin . By our observation above, the optimal solution satisfies at most
the union of the two, and thus one of fmax or fmin (the one for which the count is higher)
satisfies at least 1

2 of the maximal number of satisfiable constraints.

As we mentioned above, the set of solutions (even when it is not empty) may not be con-
vex, which is the underlying reason for the hardness of the problem. We suggest a polynomial-
time heuristic algorithm, based on our ability to solve the LTLO query problem efficiently for
a single constraint (Theorem 3). Given a simple LTLO query ϕ and a set C of constraints,
we find, for every constraint 〈π, I〉 ∈ C, an assignment f〈π,I〉 such that [[π, ϕf〈π,I〉 ]] ∈ I . Let
F = {f〈π,I〉 : 〈π, I〉 ∈ C}. Intuitively, every point f ∈ F “represents” the set S〈π,I〉,ϕ for one
of the constraints. Our algorithm combines the points in F in order to obtain a single assign-
ment. If the representation is “good enough”, we hope to get a good assignment. There are
several ways to obtain a single assignment from F . Our algorithm uses the following three.

– Minimum assignment, denoted fmin : For every x ∈ var(ϕ), if x is positive in ϕ, then
fmin(x) = minf∈F f(x); otherwise fmin(x) = maxf∈F f(x).

– Maximum assignment, denoted fmax : For every x ∈ var(ϕ), if x is positive in ϕ, then
fmax (x) = maxf∈F f(x); otherwise fmax (x) = minf∈F f(x).

– Center of gravity, denoted fCoG : For every x ∈ var(ϕ), we define fCoG(x) = 1
|F |

∑
f∈F f(x).

It is easy to prove that the center of gravity is the point that minimizes the square-
distance from f1, ..., fm. That is, fCoG = arg min {

∑m
i=1 ||f − fi||22 : f ∈ [0, 1]k}, where

||x||2 =
√∑k

i=1 x
2
i for x ∈ [0, 1]k. This motivates using this as a heuristic, as it minimizes

some sort of distance to the constraints.

Before we proceed to the experimental results, we show that in theory, all three methods may
perform poorly.

Example 1. Recall the exampleψ = Oxp∨Oyq with the constraint C = {〈{p}ω, 1〉, 〈{q}ω, 1〉}.
Clearly the assignment (1, 1) is a solution. Assume our polynomial time algorithm returns
F = {(1, 0), (0, 1)} (each point is a solution to a single constraint). The minimum assignment
heuristic then gives fmin = (0, 0), for which dist`0/1(ψ, C, fmin) = dist ||·||2(ψ, C, fmin) = 1.
The CoG heuristic cannot do quite as badly, being an average. However, in the example above
we have fCoG = ( 1

2 ,
1
2 ) for which dist`0/1(ψ, C, fCoG) = 1 and dist ||·||2(ψ, C, fCoG) = 1

2 .
It is easy to verify that taking the query ¬ψ with the same constraints may result again in
F = {(1, 0), (0, 1)}, whereas the optimum now is (0, 0), and fmax = (1, 1), again giving a
bad lower bound.

6 Experimental Results
In this section we present experimental results demonstrating our heuristic algorithm for solv-
ing the LTLO query problem. We evaluate the quality of the heuristic under the two loss
functions (namely `0/1 and || · ||2). As our benchmark we use LTL formulas from [12], to
which we add a quality layer, as well as queries constructed manually. As constraints, we
use accepting paths in the automaton for the corresponding LTL formulas, as well as man-
ually generated computations. An example of a query is a specification for a traffic light.
The atomic propositions are {N,E,W, S}, standing for a green light for traffic coming from



North, East, West, and South, respectively. We assume traffic crosses the junction and makes
no turns, and so the specification allows N and S, as well as W and E, to hold simultane-
ously, but not N and W , nor S and E, and so on. Thus, the specification includes the property
ψ = (G(N ∨ S) → (¬E ∧ ¬W ) ∧ G(E ∨W ) → (¬N ∧ ¬S)). We want the traffic light
to direct the traffic efficiently, so we require that at least one direction has a green light. This
is specified by the conjunct Gθ, for θ = (S ∨ N ∨ W ∨ E). We may also be satisfied by
FGθ. But while ψ is a crucial safety requirement, the conjuncts involving θ only concern
the efficiency of the traffic light. Thus, we can tune them down using the LTLO formula
ψ ∧ H0.4Gθ ∧ H0.9FGθ. Note that we prefer a junction that is never empty over a junction
that is only eventually never empty. But this is not the end of the story. We may want to
prioritize the different directions. Deciding the priorities and their combination with the exter-
nal tuning down of the “efficiency requirement” may be a difficult task. So, we replace θ by
θ′ = (Hx1S)∨ (Hx2N)∨ (Hx3W )∨ (Hx3E), leaving the priorities as variables. The obtained
LTLO query is ϕ5 in the table. Examples of constraints we use are 〈({N,S}, {E,W})ω, 1〉
and 〈({N,S}, ∅, {E,W})ω, 0.4〉.

We implemented the algorithm in Python and ran it on an Intel R© Core i5 2.53GHz ma-
chine. The code can be found in: http://www.cs.huji.ac.il/∼guya03/CAV13/.

Since the designer needs to reason about the paths supplied to our tool, the input con-
straints are typically short. However, in order to make sure our tool can handle long paths, we
ran a random generated path of length 120 on a query with 8 parameters. It took 11 seconds
to perform a search for a possible assignment, and reach the (not surprising) result that there
is no possible assignment. So we believe that our tool can handle constraints of any practical
length.

In Table 2 we evaluate the quality of results in the `0/1 loss function. The results show that
the algorithm preforms very well compared to the optimum. We ran the heuristic algorithm 40
times, each time with a different random ordering of the variables (recall that the algorithm
for the case of a single constraint chooses variables according to an arbitrary order, which
affects the resulting assignment). In each run we calculate, fmin and fmax in each iteration.
We evaluate the assignments by checking how many constraints they satisfy, and output the
best assignment. The running time of the algorithm that is shown in the table is the total
running time, which is still negligible compared to the optimal algorithm’s running time. In
order to find the optimal assignment (which requires solving the NP-complete problem), we
go over all the assignments that use values in the restricted search space, hence the very high
running times.

Query |C| |X | Algorithm Optimum
# of constraints satisfied running time # of constraints satisfied Running time

ϕ1 8 4 5 10sec 6 35sec
ϕ2 6 4 3 27sec 3 151sec
ϕ3 8 4 1 37sec 2 202sec
ϕ4 4 5 2 11sec 2 260sec
ϕ5 11 8 2 21sec 6 620sec

Table 2. Evaluating the heuristic under the `0/1 loss.

We continue to evaluate the heuristic under the || · ||2 loss function, as shown in Table 3.
In this approach we have no optimum to compare with (as we do not even know that the
problem is in NP). Instead, we perform sanity checks and compare our results to them. As



in the previous table, we run the algorithm 40 times and calculate fmin , fmax , and fCoG .
We evaluate the assignments by calculating dist ||·||2(ϕ, C, fmin), dist ||·||2(ϕ, C, fmax ), and
dist ||·||2(ϕ, C, fCoG), which we present in the table. Our first sanity check is the Cross valida-
tion technique, which is a widely used technique in machine learning. We partition the con-
straints C into two sets: C1 and C2. We find an assignment f1 using the constraints C1. Then,
we evaluate the assignments on the constraints C2. That is, we calculate dist ||·||2(ϕ, C2, f1).
In machine learning, the goal of this technique is, given a training set, to assess the quality
of a hypothesis. The difference between the learning scenario and our case is that there, the
training set is chosen uniformly from a certain distribution, whereas our constraints are man-
ually chosen by the designer. Thus, the accuracy of this assessment is strongly affected by the
dependencies between the constraints. This makes cross-validation unreliable at times.

In our second sanity check, we take a random assignment f and calculate dist ||·||2(ϕ, C, f).
We repeat this test 10 times and take the average distance, thus approximating the expectancy
of the distance.

As seen in the table, there is no clear winner between the minimal, maximal, and center of
gravity mechanism. As the running time of the algorithm is very short, there is no reason not
to find all three points and choose the best one for the specific instance of the problem. As de-
scribed above, the first sanity check returns mixed results. However, our heuristic significantly
out-performs the random assignment.

Query |C| |X | Distance Sanity checks
Min Max CoG Min Max CoG random

ϕ1 8 4 0.031 0.031 0.129 0.05 0.2 0.218 0.230
ϕ2 6 4 0.333 0.166 0.219 0.466 0.466 0.466 0.322
ϕ3 8 4 0.229 0.104 0.162 0.191 0.275 0.4 0.200
ϕ4 4 5 0.05 0.05 0.075 0.175 0.075 0.225 0.096
ϕ5 11 8 0.1 0.173 0.1 0.34 0.06 0.127 0.348

Table 3. Evaluating the heuristic in the distance-minimization approach.
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